
Terra: A Multi-Stage Language for High-Performance

Computing

Jan Seeger

23.1.2014

Abstract

Writing high-performance code is a work-intensive
process. Often, performance-optimized code is dif-
ficult to maintain, difficult to modify, and depen-
dent on architecture specific properties for its per-
formance. Using code generation can ease this bur-
den. By using a multi-stage language to generate
code, optimizations can be stated in a more ab-
stract fashion. In this paper, we will describe the
multi-stage programming language Terra and how
it supports generating high-performance code with-
out sacrificing readability or generality.

1 Introduction

Writing programs is hard. Writing programs that
work correctly, and also satisfy non-functional re-
quirements, such as performance, is even harder.
When the performance requirements of a program
increase, more and more optimizations are required
in order to satisfy those requirements. This makes
highly optimized program code hard to read and
understand. By using program generators, high-
performance code can be written that does not suf-
fer under the complexity of performance optimiza-
tion a program generator also allows performance
optimizations to be stated in a generic way, easing
porting of generated code across platforms.

However, generating high-performance programs is
often done in an ad-hoc way. Software that uses
program generation techniques for creating high-
performance implementations (such as ATLAS[28])
often relies on a heterogeneous set of tools (such as
configure scripts, the GNU automake tools or sim-
ilar). Software implemented in C or C++ often
uses techniques that rely on the preprocessor (such

as the X-Macro approach[16]) or the C++ tem-
plate processor (template metaprogramming [26])
for generating code. All these approaches have in
common that the language used to generate code
is different from that of the code itself.

With multi-stage languages, the language used to
write code generators is the same as (or very sim-
ilar to) the code itself. This reduces the potential
for error and allows a programmer to switch freely
between program and generator. It reduces the dif-
ficulty of writing program generators, and frees the
programmer from having to learn yet another lan-
guage for writing program generators.

In order to describe the advantages of using a multi-
stage language for writing program generators, we
will introduce the language Terra, a multi-stage
language for generating high-performance code. To
this end, we will show the facilities that Terra
makes available to the programmer to write multi-
staged code, and present example implementations
of several small programs. We will shortly describe
the implementation of Terra, and the effects on the
language. We will discuss some performance ap-
plications that can be implemented in Terra us-
ing multi-stage techniques. We will describe some
other multi-staged languages and applications their
differences to Terra briefly. Finally, we will end
with an outlook on the adoption and usage of het-
erogeneous multi-stage languages such as Terra.

2 Motivation

Consider a toy example like implementing the
sin() function for an embedded system. If the
architecture does not provide a sine function, often
the function is implemented using a lookup table.
This table contains precalculated values for a range

1



of function arguments. However, this lookup table
needs to be created in some way. Manual gener-
ation is error-prone and labor-intensive, so often,
external scripts are used to generate the table. For
example, our problem could be solved by a Python
program that generates the lookup table and writes
it to a header file. This approach is arguably less
arduous than manually writing the table, but the
probability of errors is still quite high. There are
absolutely no guarantees that source code gener-
ated in this way will be correct, both syntactically
and semantically. In contrast, consider the exam-
ple Terra program that implements sine calculation
using a lookup table in listing 1. The code is short,
and the languages used in the example are very
similar to each other. Even in this simple example,
program generation can reduce the programmer’s
burden in writing correct code, and generate per-
formant programs without having to interact with
several languages.

local sines = {}
for i = 0,179 do
sines[i] = math.sin(math.rad(i))

end
local lookup = terralib.new(double[180], sines)

terra sin(rad: int) : {double}
return lookup[rad % 180]

end

Listing 1: Precomputing a lookup table with Terra

Program generators are not a new technology by
any means, and have been widely adopted in some
areas. However, commonly used program genera-
tors are often either special purpose, or use a very
low-level representation of the manipulated pro-
gram. Examples for special-purpose program gen-
erators are code generators integrated into IDEs
(such as refactoring wizards or interface builders)
and parser generators (such as yacc, or bison).
While these special-purpose tools excel at the tasks
they were designed for (such as building graphical
user interfaces, or writing boilerplate code), they
have no applications outside those specific areas.
On the other hand, general code generation tools
such as GNU autogen[7] or Cog[1] often work with
program code in a language-agnostic way, manipu-
lating programs as string fragments that are glued
together by string interpolation or concatenation.
This does not offer a big improvement over man-
ual generation of code, since programs generated

by string operations can still be erroneous, and the
generation tools can not offer any support in find-
ing and correcting errors.

Wouldn’t it be much nicer to be able to use the
language we already have to generate the code we
want, without having to use yet another program,
and without having to fear syntax and type errors?

This is what multi-stage languages aim to provide:
They offer integrated facilities for program gener-
ation and also guarantee the absence of errors de-
tectable at compile time in the generated program.
Integrated support for program generation makes
writing program generators easier and more con-
venient, and tighter integration into the languages
makes generated code less error prone.

3 Concepts of Multi-Stage
Programming

In order to describe the multi-stage features of
Terra, some basic concepts of multi-stage program-
ming need to be introduced. The word “stage” in
multi-stage programming refers to distinct phases
in the execution of a program, that differ either
by frequency of execution or availablility of infor-
mation (compare [12]). Stages can be defined as
coarsely or finely as the implementor wishes. It
is easy to see that taking advantage of this stag-
ing information allows more efficient programs to
be generated. As an example, consider the (coarse)
stages of a compiled program. A compiled program
can be said to have two stages, compilation and ex-
ecution. Preprocessor directives are run at compile
time, while regular program code is run at runtime.
Using the preprocessor, it is possible to do less work
at runtime by generating code at compile-time, and
thus generate a higher-performance program. This
is a technique that is also used when programming
in multi-staged languages, but we will see in chap-
ter 5 that MSP languages allow the transparent im-
plementation of a host of other optimizations. In
general, multi-stage programming allows the pro-
grammer to take advantage of the staged structure
of programs and thus to generate more general as
well as better performing code.

As multi-stage programming languages allow the
generation of other programs, they also fall in the
field of meta-programming. Meta-programming is

2



the study of programs generating other programs.
For an overview of metaprogramming techniques
and implementations, see [21].
When we run a multi-stage program, in reality we
are executing more than one program: Rather, we
are running a number of programs equal to the
number of stages in the multi-stage program. Each
program in one stage generates the program in the
next stage. In metaprogramming parlance, the pro-
gram that is executed and that manipulates other
programs is the metaprogram, while the program
being manipulated is called the object program. So
each stage (except the first and the last) in a multi-
stage program is a metaprogram as well as an ob-
ject program.
In order to describe the implementation of these
concepts in Terra, we will shortly introduce the lan-
guage syntax in the next chapter.

4 The Terra language

Terra is a multi-staged language created by DeVito
et al. in order to create a language suited for high-
performance program generation problems[6].
Strictly speaking, Terra consists of two languages:
The metalanguage Lua (see lua.org), and the ob-
ject language Terra. When speaking of the Terra
language (including the lower-level Terra languages
as well as the upper level Lua language) as a whole,
we will use “the Terra MSP language” from now
on, while the lower level language embedded in the
Terra MSP language will simply be called “Terra”.
Terra is a low-level language comparable to C, while
Lua is an embeddable and extensible scripting lan-
guage with dynamic typing and automatic memory
management.

4.1 Syntax

In order to explain the features of the Terra MSP
language, we will briefly describe the syntax of the
Terra language. We will only briefly present the
features of Lua that are interesting for multi-stage
purposes. For an in-depth discussion of the Lua
language, see [11].
Lua has several features that make it suited as a
metalanguage: Its focus on embeddability and ex-
tensibility means that extensions to Lua are easy to
design and implement, while its conventional and

clean syntax presents low hurdles of entry. The ex-
tensibility of Lua makes it easy to implement new
language features, without having to greatly mod-
ify the interpreter. A particular point of interest for
writing multi-staged programs is support for first-
order functions. The Terra MSP language supports
first-order functions in Lua for both Lua and Terra
functions. This greatly simplifies handling of Terra
functions in the top-level language.
Terra is the lower-stage component of the Terra
MSP language. It is a low-level language, similar
to C. In fact, Terra is backwards compatible to C,
and can import and use functions from C header
files. As its closeness to C implies, Terra supports
pointers, function pointers and arrays in much the
same way as C. Memory management must also be
done manually. For an example of Terra code, see
listing 2.

str = terralib.includec("string.h")
ctype = terralib.includec("ctype.h")
io = terralib.includec("stdio.h")

-- Note type declaration
terra upcase_string(s: &int8): &int8
-- Variables need declaration
-- as well as type declaration
var len: int = str.strlen(s)
for i = 0, len do
s[i] = ctype.toupper(s[i])

end
return s

end

io.printf("%s\n",
upcase_string("bliblablub"))

Listing 2: String operations in Terra

This code looks like a C program, with some syn-
tactic differences: The syntax of Terra is strongly
influenced by Lua. Some differences to Lua are type
specifications (similar to C, but can sometimes be
elided), variable declarations with the var keyword
and operations such address-of (&) and dereferenc-
ing (@). While the syntax of Terra is strongly in-
fluenced by Lua, the absence of several features of
Lua is notable: First class functions are not sup-
ported, as well as the associative array (or “table”)
so important to Lua.
However, Terra offers some syntactic sugar that
is not present in C and simplifies implementing
code that mimics object-oriented programming.
Such features are multiple return values, automatic
pointer dereferencing and a special syntax for defin-

3

lua.org


ing methods of structs. For an example of these
techniques, see the implementation of a simple
stack in listing 3.

cio = terralib.includec("stdio.h")

-- Struct definition similar to C
struct StackElem {val: int, next: &StackElem};
struct Stack {height: int, elems: &StackElem};

terra newStack() : {&Stack}
var newstack: &Stack =
[&Stack](std.malloc(sizeof(Stack)))

-- Automatic pointer dereferencing
newstack.height = 0
newstack.elems = nil
return newstack

end

-- Define a method for the Stack
terra Stack:push(val: int) : {}
-- function body omitted
end

-- Multiple return values
terra Stack:pop() : {int, rawstring}
-- function body omitted
end

local s = newStack()
-- Method call syntax
s:push(3)
--Access multiple return values
local ret, err = s:pop()

Listing 3: Structs, methods and multiple return
values in Terra

While these devices make programming in Terra
relatively easy and convenient, the true power of
the Terra MSP language comes from the fact that
it is run and parametrized by the upper stage Lua
code. In the next chapter, we will describe the in-
teraction between higher-level Lua and lower-level
Terra code and show some examples of the expres-
sive power made available by this combination.

4.2 Multi-staging in Terra

Recall that Terra consists of two languages: Lua
and Terra. Lua is the higher-level language, and
controls execution and generation of Terra code.
This makes the MSP language Terra a heteroge-
neous multi-stage language, a language where the
object language is different from the metalanguage.
This has the advantage that meta- and object lan-
guage can be selected so that the resulting MSP

language has some desired properties. Terra con-
sists of Lua, which is a flexible, dynamically typed
upper-level language, and Terra, a lower-level lan-
guage which is statically typed. This allows flexibil-
ity when generating code, and generation of high-
quality code for the lower level language.

However, a drawback of heterogeneous multi-stage
programming languages is that they often do not
support more than two stages. Terra only sup-
ports a maximum of two stages, while other MSP
languages (such as MetaML) support an arbitrary
number of stages.

As we stated in chapter 4, the power of Terra stems
from the fact that evaluation of Terra code is done
under control of high-level Lua code. In order for
Lua code to control evaluation and parametrization
of Terra code, we need facilities to generate and ex-
ecute Terra program code in Lua. The Terra MSP
language uses a quasiquotation-like approach that
occurs in similar form in other languages (such as
Haskell[14] or Lisp[2]). The Terra MSP language
uses quotes and splices: Quotes are used in Lua
code in order to generate Terra expressions, and
splices are used in Terra code in order to evaluate
Lua expressions and insert their value.

Quotes in Terra can be either the character ‘ for ex-
pressions (for example ‘5 * 3 denotes a Terra ex-
pression that evaluates to) 15) or the quote state-
ment for quotes that contain statements (like the
quote statement in listing 4).

Splicing is done by using the square brackets [].
When Lua code within square brackets is encoun-
tered in Terra, the Lua code is executed and the
result is placed where the splice was encountered.

Together, these two constructs allow the genera-
tion of arbitrary code. Also note that [‘expr] is
equivalent to writing expr directly in Terra code.
For a closer look at the interaction between Terra
and Lua using splices and quotes, see listing 4. The
code in listing 4 generates 10 power functions, each
with an unrolled loop containing exactly the right
number of multiplications. The code is generated
by the Lua function generate power by return-
ing quotes containing the necessary number of mul-
tiplications.

function generate_power(x, y, z)
local stmts = terralib.newlist()
for j = 1, z do

-- Quote Terra code
stmts:insert(quote

4



x = x * y
end)

end
return stmts

end

mymath = {}
for i = 1,10 do
mymath["pow" .. tostring(i)] =
terra(a: uint64) : uint64
var r:uint64 = 1;

-- Splice code returned by generate_power
[ generate_power(r, a, i) ]
return r

end
end

Listing 4: Generating staged power functions

Beyond these explicit quotes and interpolations,
values are also automatically transported between
Terra and Lua. Terra functions share the lexical
environment of the Lua code. This means that
variables are not only looked up in the scope of the
Terra function currently being compiled, but also in
the surrounding Lua code. This means that explicit
interpolation is often not required for parametriz-
ing Terra code. Listing 2 already makes use of
these features: all code outside the terra func-
tion declaration is Lua code. str, ctype and io
are Lua tables that are filled with C functions. In
the Terra function, str.strlen() accesses the
strlen key of the Lua variable str. Since tables
can contain Terra function and types, this makes
it possible to use Lua tables as a simple module
system for Terra.

For a diagram of the control flow between Terra
and Lua, see figure 1. Execution begins by run-
ning Lua code, and the multi-staging constructs of
the Terra MSP language switch between generating
Terra code, and executing Lua code. When a quote
is encountered, Terra code is generated, and when
a splice is encountered in Terra code, Lua code is
executed. Finally, when a Terra function is called,
the generated Terra code is executed.

Note the difference between variables x, y, and
z in the call to generate power in listing 4:
While z is a Lua variable (and thus is known
when generate power is executed), x and y are
Terra variables. Terra variables do not yet have
a value when the generate power function is
called. Therefore, Terra variables evaluate to a ref-
erence to themselves when used in Lua. Also note

Lua code

Terra function
definition

Splices
[ ]

Quotes
` or quote

Terra code

Figure 1: Interaction between Terra and Lua

that in order to prevent unintended variable cap-
ture, Terra variables in quotes are renamed: When
running the program in listing 5, the variable x
from returnx is renamed to $1. This prevents
unintentionally reusing variable names, which may
cause programming errors.

function returnx()
return quote
var x = 3

end
end

function splice()
return terra()
var x = 5
[ returnx() ]
print(x)

end
end

splice():printpretty()

Listing 5: Variable renaming in Terra

The Terra MSP language is not limited to splicing
only expressions and statements: All Terra types
are Lua values. For example, in the declaration
var i: int = 0;, int is a Lua value that can be
inspected in Lua code. Information about the type,
such as maximum and minimum values or size of
the type can be retrieved in Lua code. For ex-
ample, on this machine, print(int.bytes) in the
terra toplevel outputs 4. This allows the genera-
tion of generic data types, similar to using C++
templates.

4.3 Specialization and Typechecking

The interaction between Terra and Lua has three
important phases: Specialization, Typechecking

5



Function definition

local f = terra(...)

Specialisation
into pure

Terra code

Typechecking &
Compiling into 

LLVM code

Terra function call

f(1,2,3)

Execution

Figure 2: The compilation process of Terra

and, finally, compiling.

When Terra code is first defined, specialization is
executed. This means that all Lua variables and
splices in the code are replaced with their values
(i.e. Lua code is executed to get its value). This
process may fail, for example when a variable that
is not bound is encountered in the Terra code. After
specialization, the function consists only of Terra
code.

It is important that this specialization step occurs
when the Terra function is defined: If specializa-
tion occurred when the Terra function is called,
lexical scoping for the Lua values would not be
preserved, and code could refer to Lua values that
are not defined at the point of definition. When a
Terra function is run, it is typechecked and com-
piled into LLVM code, and then run by LLVM. For
an overview of the process, see figure 2.

Using the methods printpretty() and
disas(), both the generated Terra code af-
ter specialization and the generated assembler
code after compilation can be examined, as is
shown in listing 6. Also, using the saveobj()
method, the compiled Terra function can be
written to an object file and reused by other C
code. Executable files can be written as well,
allowing Terra to generate exceutables that do not
contain any trace of the Terra runtime any more.

local a = 1
local b = "hanspeter"

cio = terralib.includec("stdio.h")

local terrafn = terra()
cio.printf("A is %d and b is %s.\n", a, b)

end

terrafn:printpretty()
terrafn:disas()
-- Generates an executable file that calls terrafn
terralib.saveobj("out", {main = terrafn})

Listing 6: Examining generated code

5 Applications

Multi-stage programming is of great interest when
performant programs are required. Applications
for multi-staging techniques exist in multiple fields.
A first simple example is the generation of staged
power functions in listing 4. When a specific power
function (e.g. pow10() is needed multiple times, a
pre-generated function can be more efficient than a
compiled function (provided the power function is
not called with a constant first argument). Because
the programmer has more information about the
call contexts of the function, he can generate code
that is more efficient than regular compiled code.
Having control over code generation allows the pro-
grammer better control over performance optimiza-
tions. While often, a smart compiler can generate
performant code for a variety of systems, the pro-
grammer often has a better understanding of run-
time behavior of code. This allows performance
optimizations that are not immediately obvious to
compilers. Using code generation, optimizations
can be stated on a higher level, without unduly
complicating the program.
An example presented by DeVito et al[6] is
loop blocking: changing the iteration order of a
computation-intensive loop can produce more per-
formant cache behavior of the program. A sophis-
ticated compiler would most likely execute this op-
timization as well, but by using multi-stage pro-
gramming, the optimization remains under con-
trol of the programmer. This allows application of
auto-tuning techniques, such as evaluating different
blocking schemes in one program. By auto-tuning
a matrix multiply operation, a high-performance
matrix multiply operation was generated by De-
Vito et al. with comparable performance to com-
mercial linear algebra packages. The program was

6



only 200 lines of code in all, much smaller than the
other evaluated packages.
Other optimizations that can benefit from these
auto-tuning techniques are register blocking (op-
timize the code so variables all fit inside the regis-
ters of the target architecture), vectorization (Terra
includes support for vector operations), loop un-
rolling or instruction reordering. While applying
these transformations requires a good understand-
ing of optimization techniques in general, multi-
stage techniques allow implementation of these
techniques in a general way. Optimization meth-
ods could even be exposed in a library, which would
make implementation of auto-tuning software even
easier.
Apart from low-level optimizations such as those
described above, multi-stage programming is also
useful for writing compilers or implementing do-
main specific languages in an efficient manner. By
emitting code instead of evaluating code, a compiler
for a language can be written in a simple manner,
simply by inserting staging constructs in the cor-
rect places.

--AST format: {op = <cmdname>,
--arg1 = <first argument>, arg2 = <second argument>
function eval(command, env)
if command.op == "True" then return(true)
elseif command.op == "False" then return(false)
elseif command.op == "And" then
return (eval(command.arg1, env) and

eval(command.arg2, env))
-- Some code omitted
elseif command.op == "Forall" then
local truevalue =
eval(command.arg2, ext(env, command.arg1, true))

local falsevalue =
eval(command.arg2, ext(env, command.arg1, false))

return truevalue and falsevalue
elseif command.op == "Var" then
return(env(command.arg1))

Listing 7: Non-staged QBE interpreter

function generate_code(code, stack, vars,
varsize, frame)

if code.op == "True" then
return quote
stack:push(true)

end
elseif code.op == "False" then
return quote
stack:push(false)

end
elseif code.op == "And" then
return quote
[ generate_code(code.arg1, stack,

vars, varsize, frame) ]
[ generate_code(code.arg2, stack,
vars, varsize, frame) ]

stack:push(stack:pop() and stack:pop())
end

-- Code omitted
elseif code.op == "Var" then
local i2 = frame[code.arg1][1]
return quote
stack:push(vars[ [i2] ] )
end

end
end

function compile(code, vars)
local frame = {}
for k,v in pairs(vars) do
frame = extend_frame(v, frame)

end
return terra(vars: &bool, varsize: int)

: {bool}
var s: &Stack = newstack()
[ generate_code(code, s, vars,

varsize, frame) ]
return s:pop()

end
end

Listing 8: Staged QBE compiler for a stack machine

As an example, consider a program for evaluating
quantified boolean expressions (expressions such as
∀x : ¬x ∨ x). An interpreter would look something
like the code in listing 7. The interpreter is very
easy to understand and easy to verify. However,
in general interpreters are not very efficient. Using
staged programming techniques, a compiler for the
same program can be written. It is very similar to
the original simple interpreter, but performs bet-
ter. For some example code showing the staged
compiler, see listing 8. While variable handling
has become a bit more difficult, the general struc-
ture of the compiler is still recognizably similar to
the original interpreter. While compilers can theo-
retically be generated automatically from partially
evaluated interpreters (see [9]), the multi-stage ap-
proach is easier to understand for the programmer,
and creates a useful starting point for improving
the compiler. DSLs can be useful for many different
causes, and performance is often a concern. A cur-
rent example is the implementation of nftables[4], a
network filtering software, where filter expressions
are compiled into efficient byte code.

7



6 Related Work

Terra is a multi-stage language geared towards cre-
ating high-performance programs by parametrizing
the execution of a low-level language via a higher-
level language. While Terra and Lua are integrated
relatively closely, they are nonetheless different lan-
guages. Terra is a heterogeneous multi-stage lan-
guage.
Heterogeneous multi-staged environments have
been used before in order to generate high-
performance code. This staging approach is used
with much success in the Fast fourier trans-
form library FFTW[8], the linear algebra library
ATLAS[28] or SPIRAL[19], an autotuning signal-
processing library. The multi-staging approach
used in these libraries is comparable to SQL query
optimization: A plan is generated using some build-
ing blocks suitable for the solution weighted by a
cost function, and then it is executed. The genera-
tion and execution of the plan are the stages in this
process. This approach aims to generate optimized
software without requiring intimate knowledge of
the target.
However, the mentioned packages only solve very
specific problems, and the generated plan is not
accessible to the user (or at least not meant to
be accessed). Also, writing plans directly is not
supported. Because of this, these packages cannot
be considered implementations of heterogeneous
multi-stage programming languages (they use fea-
tures of multi-stage programming, however!).
In contrast to heterogeneous multi-stage languages,
several homogeneous multi-stage languages exist:
MetaML[25], MetaOCaml[24], MetaHaskell[15] and
Metaphor[17] as well as several others[18][20][13].
In these languages, the meta-language and the ob-
ject language are the same. Also, all of these lan-
guages use static typing. These choices have sev-
eral advantages: Using the same language for both
meta- and object program allows an arbitrary num-
ber of stages. In a heterogeneous language, this is
only possible if meta- and object languages able to
embed each other. Also, with static typing it is
possible to ensure that generated code is also type-
correct, something that Terra can not guarantee:
Since Lua is dynamically typed, the generation of
code can potentially fail (namely, during special-
ization and typechecking). Using static types, it
is possible to ensure certain guarantees for gener-

ated code. For a closer look at problems arising in
statically typing multi-stage code, refer to [23].

Some multi-staging approaches in mainstream lan-
guages also exist. The C++ template system de-
serves special mention: Using the template sys-
tem, arbitrary code can be executed at compile
time. It is, for example, possible to generate a list
of prime numbers. The C++ template system is,
in fact, a turing-complete functional language exe-
cuted at compile time. For a closer description of
C++ template metaprogramming, see [26]. Tem-
plate metaprogramming has also been introduced
into other languages. TemplateHaskell[22] for ex-
ample formalizes a language for preprocessing the
source code of Haskell programs. TemplateHaskell
is integrated in current versions of the Glasgow
Haskell Compiler. OCaml also supports a prepro-
cessing system called Camlp4[5]. Note that these
template systems do not offer the full flexibility of a
multi-staging language: Code is generated at com-
pile time and executed at runtime, while in multi-
stage languages, code can be executed arbitrarily.
Programs such as auto-tuners that interleave code
generation and execution can not be realized in
template systems.

Macros are a technique that is similar to the tem-
plate metaprogramming approach. In languages
with “proper” macros (unlike the C preprocessor),
macros are written in the language being compiled,
and are expanded at compile time, taking the un-
evaluated source code as an argument. This allows
generation of programs at compile time, similar to
multi-staged programming. In fact, [10] argues that
macros are a subset of multi-staged computation.

7 Conclusion

The heterogeneous multi-staging approach of Terra
seems a promising approach to generating high-
performance code, while still allowing the code to
be well abstracted. Using the multi-staging fea-
tures of Lua, high performance programs can be
created by generating code that is optimal for the
current runtime environment. Examples of such
optimisations are loop blocking (dependent on the
size of caches) or instruction vectorisation (depen-
dent on the instruction set the processor supports).
The Terra language makes it easy to perform these
and similar low-level optimizations from a high-

8



level standpoint, without losing generality. In con-
trast to other performance-oriented code genera-
tion tools, Terra allows these optimizations without
using supplemental tools.

On the other hand, using a heterogeneous multi-
stage language entails translation between those
two languages. While the conversion between Terra
and Lua values is handled transparently for simple
types (like strings and numbers), conversion has to
be done manually in many cases. For more com-
plex data structures, developers have to implement
their own conversion functions. Here, it would be
interesting to implement better conversion routines
between Lua and Terra, and reducing the need for
explicit type specification when transferring data
between Lua and Terra.

The decision to use dynamic typing for the upper-
stage language was most probably motivated by
challenges in static typing for multi-stage languages
(compare [3]). While dynamic typing for the up-
per stage language eases implementation without
concern for edge cases in the type system, it intro-
duces potential for error. Statically typed multi-
stage languages like MetaOCaml guarantee that
only type-correct code can be generated, but have
to deal with some unique complications (such as
scope extrusion). A statically typed multi-stage
language that shares Terra’s C compatibility and
staging approach would ease interaction between
the two stages, and allow the same optimizations
that Terra does. However, most of the use of multi-
stage languages has been academic. Also, many
languages are no longer supported and developed
by their authors.

Since most research has occurred in the realm of
homogeneous multi-stage languages, the release of
Terra will hopefully give a boost to research in the
area of heterogeneous multi-stage languages. With
infrastructure such as LLVM, we will hopefully see
other multi-stage languages that allow performance
optimizations similar to Terra in a statically typed
setting.

References

[1] Ned Batchelder. Cog: a code genera-
tion tool. http://nedbatchelder.com/
code/cog/.

[2] Alan Bawden et al. Quasiquotation in Lisp. In
PEPM, pages 4–12. Citeseer, 1999.

[3] Cristiano Calcagno, Eugenio Moggi, and
Walid Taha. Closed types as a simple approach
to safe imperative multi-stage programming.
In Automata, Languages and Programming,
pages 25–36. Springer, 2000.

[4] Jonathan Corbet. The return of nftables.
http://lwn.net/Articles/564095/,
August 2013. Accessed: 15.1.2014.

[5] Daniel de Rauglaudre. Camlp4. http://
pauillac.inria.fr/camlp4/, Jan 2014.
Accessed: 14.1.2014.

[6] Zachary DeVito, James Hegarty, Alex Aiken,
Pat Hanrahan, and Jan Vitek. Terra: a multi-
stage language for high-performance comput-
ing. In PLDI, pages 105–116, 2013.

[7] Free Software Foundation. Autogen: the
automated text and program generation
tool. https://www.gnu.org/software/
autogen/. Accessed: 27.11.2013.

[8] Matteo Frigo and Steven G Johnson. FFTW:
An adaptive software architecture for the
FFT. In Acoustics, Speech and Signal Pro-
cessing, 1998. Proceedings of the 1998 IEEE
International Conference on, volume 3, pages
1381–1384. IEEE, 1998.

[9] Yoshihiko Futamura. Partial evaluation
of computation process–an approach to a
compiler-compiler. Higher-Order and Symbolic
Computation, 12(4):381–391, 1999.

[10] Steven E Ganz, Amr Sabry, and Walid Taha.
Macros as multi-stage computations: type-
safe, generative, binding macros in macroml.
In ACM SIGPLAN Notices, volume 36, pages
74–85. ACM, 2001.

[11] Roberto Ierusalimschy, Waldemar Celes, and
Luiz Henrique de Figueiredo. The Lua pro-
gramming language. http://www.lua.
org/, 1993. Retrieved: 1.12.2013.

[12] Ulrik Jørring and William L. Scherlis. Com-
pilers and staging transformations. In Pro-
ceedings of the 13th ACM SIGACT-SIGPLAN

9

http://nedbatchelder.com/code/cog/
http://nedbatchelder.com/code/cog/
http://lwn.net/Articles/564095/
http://pauillac.inria.fr/camlp4/
http://pauillac.inria.fr/camlp4/
https://www.gnu.org/software/autogen/
https://www.gnu.org/software/autogen/
http://www.lua.org/
http://www.lua.org/


Symposium on Principles of Programming
Languages, POPL ’86, pages 86–96, New York,
NY, USA, 1986. ACM.

[13] Jurgen Kleinoder and Michael Golm. Meta-
Java: an efficient run-time meta architec-
ture for JavaTM. In Object-Orientation in
Operating Systems, 1996., Proceedings of the
Fifth International Workshop on, pages 54–61.
IEEE, 1996.

[14] Geoffrey Mainland. Why it’s nice to be quoted:
quasiquoting for Haskell. In Proceedings of the
ACM SIGPLAN workshop on Haskell work-
shop, pages 73–82. ACM, 2007.

[15] Geoffrey Mainland. Explicitly heterogeneous
metaprogramming with MetaHaskell. In Pro-
ceedings of the 17th ACM SIGPLAN Interna-
tional Conference on Functional Programming
(ICFP ’12), pages 311–322, Copenhagen, Den-
mark, 2012.

[16] Randy Meyers. The new c: X
macros. http://www.drdobbs.com/
the-new-c-x-macros/184401387, May
2001. Accessed: 11.1.2014.

[17] Gregory Neverov and Paul Roe. Metaphor: a
multi-stage, object-oriented programming lan-
guage. In Generative Programming and Com-
ponent Engineering, pages 168–185. Springer,
2004.

[18] Massimiliano Poletto, Wilson C Hsieh, Daw-
son R Engler, and M Frans Kaashoek. C and
tcc: a language and compiler for dynamic code
generation. ACM Transactions on Program-
ming Languages and Systems (TOPLAS),
21(2):324–369, 1999.

[19] Markus Püschel, José MF Moura, Bryan
Singer, Jianxin Xiong, Jeremy Johnson, David
Padua, Manuela Veloso, and Robert W John-
son. Spiral: A generator for platform-adapted
libraries of signal processing algorithms. Inter-
national Journal of High Performance Com-
puting Applications, 18(1):21–45, 2004.

[20] Tiark Rompf and Martin Odersky.
Lightweight modular staging: a prag-
matic approach to runtime code generation

and compiled dsls. In Acm Sigplan Notices,
volume 46, pages 127–136. ACM, 2010.

[21] Tim Sheard. Accomplishments and research
challenges in meta-programming. In Walid
Taha, editor, Semantics, Applications, and
Implementation of Program Generation, vol-
ume 2196 of Lecture Notes in Computer Sci-
ence, pages 2–44. Springer Berlin Heidelberg,
2001.

[22] Tim Sheard and Simon Peyton Jones. Tem-
plate meta-programming for Haskell. In Pro-
ceedings of the 2002 ACM SIGPLAN workshop
on Haskell, pages 1–16. ACM, 2002.

[23] Walid Taha, Zine-El-Abidine Benaissa, and
Tim Sheard. Multi-stage programming: ax-
iomatization and type safety. In KimG.
Larsen, Sven Skyum, and Glynn Winskel, edi-
tors, Automata, Languages and Programming,
volume 1443 of Lecture Notes in Computer
Science, pages 918–929. Springer Berlin Hei-
delberg, 1998.

[24] Walid Taha, C Calcagno, L Huang, and
X Leroy. MetaOCaml: a compiled, type-safe
multi-stage programming language. 2001.

[25] Walid Taha and Tim Sheard. MetaML
and multi-stage programming with explicit
annotations. Theoretical computer science,
248(1):211–242, 2000.

[26] Todd Veldhuizen. Using C++ template
metaprograms. C++ Report, 7(4):36–43, May
1995. Reprinted in C++ Gems, ed. Stanley
Lippman.

[27] Todd L. Veldhuizen. Expression tem-
plates. C++ Report, 7(5):26–31, June 1995.
Reprinted in C++ Gems, ed. Stanley Lipp-
man.

[28] R. Clint Whaley, Antoine Petitet, and Jack J.
Dongarra. Automated empirical optimizations
of software and the ATLAS project. Parallel
Computing, 27(1–2):3 – 35, 2001. New Trends
in High Performance Computing.

10

http://www.drdobbs.com/the-new-c-x-macros/184401387
http://www.drdobbs.com/the-new-c-x-macros/184401387

	Introduction
	Motivation
	Concepts of Multi-Stage Programming 
	The Terra language
	Syntax
	Multi-staging in Terra
	Specialization and Typechecking

	Applications
	Related Work
	Conclusion

