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Abstract

This work describes the implementation of a network data analysis system for analysing
existing network research data. This project’s aim is the implementation of a system
that allows analysing existing research data regardless of storage system or format.

For this, we implement a system storing data in its original format, and allowing target-
ted access to that data via a centralized database and custom-made access components.
Additionally, the system supports internal custom preprocessing of data, the automation
of repeated experiments, a web interface for ad-hoc analysis of data as well as a python
module for programmatic analysis of data.

We then evaluate the implemented system’s performance and execute a simple analysis,
to provide an example for usage of the system.





Zusammenfassung

Diese Arbeit dient der Implementierung eines integrierten Analysesystems für vorhan-
dene Netzwerkdaten. Ziel ist es, ein System zu implementieren, welche die Verwertung
von Netzwerkdaten unabhängig von Speicherung und Format erlaubt.

Hierzu wird ein dezentrales System implementiert, welches Daten in ihrem originalen
Speichersystem aufbewahrt, und mithilfe eines zentralen Index und speziellen Zugri�s-
komponenten einen gezielten Zugri� auf diese Daten erlaubt. Ausserdem unterstützt das
System die interne Vorverarbeitung von Daten, die Automatisierung von wiederholten
Experimenten, ein Web-Interface für Ad-Hoc-Analyse von Daten sowie ein Python-
Modul zur programmgesteuerten Analyse der Daten.

Das implementierte System wird dann auf seine Performance untersucht, und eine
einfache Analyse durchgeführt, um ein Beispiel für die Verwendung des Systems zu
zeigen.
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Chapter 1

Introduction

Today’s internet research results in huge amounts of data being kept in research in-
stitutes. Additionally, more and more data is constantly being generated. However,
available analysis technology is not keeping pace with this rapid growth of measure-
ment data. The commodi�cation of such measurement data (driven by faster networks
and better scanning technology) makes it more important than ever to research avenues
for combined and centralized data analysis.

To illustrate the point more thoroughly, we will follow the course of a single research
experiment and the data it generates. An experiment is executed, generating a homoge-
neous mass of data. During the course of research, this data is analyzed with custom
tools and methodologies. Once the experiment is completed, the data is often kept
readily available, in order to facilitate reproduction of experiment results, or with the
goal of eventual reuse. However, while the stored data may be readily available to the
original researcher, access by other scientists is often considerably more di�cult, as the
custom programs, analysis methods and scripts used for the original experiment are not
available publicly. Examples for this are database schematics whose semantics are not
clear, binary �les used for storage whose structure is not known, and missing custom
scripts for conditioning the experiment data.

In general, data from such networking experiments can rarely be reused for additional
research beyond that of the original experimenter. Additionally, it is di�cult for re-
searchers to gain access to the data, thus making research results hard to reproduce.

We argue that facilitating easier access to research datasets would allow additional
research to take place on existing data. Existing data can also be used to extend the
results of existing research, and allow reproduction of existing research.

To allow this, this work will design, implement and evaluate a system termed “Em-
pirator”. The Empirator system aims to facilitate research on combined networking
experiment data from di�erent sources, while supporting a wide variety of data, and
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allowing easy retrieval, selection and experimentation on that data.

However, implementing such a system is challenging. Firstly, the systems and formats
of research data can di�er widely: From being stored in di�erent types of databases
(relational, key-value, graph or document databases) to �les in di�erent formats (such as
the MRT format for BGP data, or zone �les for DNS data). Retrieving and representing
such data is di�cult. Furthermore, data is often distributed over the network and not
centrally accessible on a single machine. Finding a method to allow easy access to and
representation of such heterogeneous data is a key challenge in this project.

Another di�culty is the huge amount of data: A scan of the full IPv4 address space
can result in billions of data items, and multiple scans quickly increase the total data
available. Here, a challenge is to �nd a space-e�cient storage method that still allows
access to the full original experiment data in an e�cient way.

Additionally, access to the data is not a big advantage if the semantics of the data are
not clear. If the original researcher has not made his exact methods for accessing and
selecting the data public, it will be di�cult to use the data for meaningful experiments,
even if it can be accessed easily enough. Thus, a secondary objective of the Empirator
system will be the addition of small amounts of metadata to the original data source to
facilitate data reuse without contacting the original experimenter.

The Empirator system we propose will help alleviate these concerns by providing a
platform for central data storage and analysis. In the following chapters 2.1 and 2.2, we
will provide some background information for the reader, as well as present work related
to this endeavor. In chapters 3 and 4, we will describe design and implementation of the
system. In chapters 5, the performance of the implemented system will be evaluated.
In chapter 6, we will describe avenues for further research, as well as summarize the
results of this work.
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Chapter 2

Background & Related Work

2.1 Background

2.1.1 Internet-Wide Scanning

The internet has grown to such an extent that the number of available IPv4 addresses
has almost been exhausted. This means that the internet now consists of more than 3
billion hosts.

In order to collect reliable data on the internet’s structure and composition, internet-
wide scans can be used. The emergence of new tools for mass scanning like ZMap [1]
or masscan1 and the wide availability of high bandwidth networking has made such
scans much easier and faster.

An internet wide scan consists of enumerating all non-reserved IP addresses, and send-
ing some sort of probe to each, or a subset, of all available addresses. Probes can be
simple (like ICMP echo requests), or more complex (like a complete SSL handshake).
The target and response to the probe are then logged.

Scanning the internet in this way results in large amounts of data, depending on the
information logged, and scanning may take a long time, depending on the bandwidth
used to scan.

The resulting datasets have a variety of uses, particularly in the �eld of security research.
Prominent examples include analysis of the SSH protocol [2], and evaluation of TLS
security [3].

However, the results of such scans must be examined carefully. Factors such as scan
location and scan duration strongly in�uence the information that can be gained from

1https://github.com/robertdavidgraham/masscan

https://github.com/robertdavidgraham/masscan
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a scan. For example, network segments can be unreachable for a certain time, and
reappear during the scan, leading to partial data for that network.

Additionally, network tra�c is often modi�ed by a number of network hosts, depending
on network origin, location of the sender or tra�c. This might lead to scan results being
modi�ed depending on such factors. Examples for these kinds of tra�c modi�cation
include �rewalls, load balancers and network address translation.

Nonetheless, important information can be gained from analyzing such scans.

2.1.2 The BGP protocol

The border gateway protocol (BGP) is used to distribute routing information across
autonomous systems. Therefore, BGP forms the basis of internet-wide routing decisions.
The current version of BGP is described in RFC 4271 [4].

To participate in BGP, each protocol speaker is con�gured to exchange information with
one or more peers. Once connected, these peers exchange routing information over
the network. This collected routing information (also called RIB, “routing information
base”), combined with locally con�gured policies, is then used by the participating
routers to select a route to include in the local routing table.

Routing information can be announced (prompting all peers to store this routing infor-
mation in their Loc-RIB) or withdrawn (causing peers to remove it from their RIB, and
potentially from their routing table). Routing information always pertains to pre�xes
of IP addresses.

BGP packets can contain either “management” level functions like Open, RouteRefresh
or Noti�cation, which will not be used in this work, or connection information in
an Update message. Each update message contains a number of pre�xes that were
withdrawn by the peer (meaning the pre�xes are no longer reachable via that peer) and
a number of announced pre�xes (meaning the pre�xes are reachable via that peer), as
well as a number of attributes applying to the announced pre�xes. These attributes
can be required or optional. The three required attributes of an update message are the
following:

Origin How this routing information was created

AS path The list of AS through which this information has passed

Next hop The next hop of a path to reach the advertised pre�x

Additionally, BGP packets often carry a number of additional, but optional attributes
for in�uencing routing decisions, such as the multi-exit discriminator or the local-
preference �eld used for routing decisions.



2.2. Related Work 5

Since BGP forms the basis of a large number of routing decisions in the internet, analysis
of the protocol is very useful for understanding the structure of the internet.

2.1.3 TLS and X.509

TLS and its predecessor SSL are cryptographic protocols using asymmetric cryptography
to ensure con�dentiality, integrity and authenticity of messages. In particular, TLS
and SSL are widely deployed in combination with HTTP as HTTPS for secure web
communication. TLS and SSL both rely on the X.509 standard, which de�nes standards
for public key infrastructure and public key certi�cates. TLS allows the exchange of
arbitrary application data over an encrypted channel, and de�nes a wide variety of
primitives to set up this channel.

TLS 1.2 supports 19 key exchange methods, 9 encryption cipher/encryption mode vari-
ants and 4 data integrity functions. While this allows users to choose encryption settings
that match their requirements, this high number of con�guration possibilities also in-
creases the potential for miscon�guration, thereby making the connection insecure.
While high modularity makes it possible to quickly migrate from insecure ciphers to
secure ones, this migration often happens very slowly. Thus, it is interesting to see how
deployments of X.509 are con�gured, and how the use of secure primitive combinations
changes over time.

The X.509 public-key infrastructure (PKI) used by TLS is another subject that lends itself
to study. The X.509 PKI is described in RFC 5280 [5]. Its basic structure is as follows:
Participants identify themselves via a certi�cate, which contains the public key of that
participant as well as identifying information (such as name, or website URL). In order
to prove the correctness of this information, the certi�cate is signed by a third party’s
private key. In order to verify this signature, another certi�cate is needed, and so on.
This certi�cate chain ends at some certi�cate that is implicitly trusted. This certi�cate is
called root certi�cate. These root certi�cates are issued by certi�cate authorities (CAs),
who check whether the information in the certi�cates they sign is correct.

While this is theoretically sound, CAs often fail to correctly verify certi�cates, or issue
certi�cates that can be misused. In recent times, several incidents with miscon�gured
CAs or wrongly issued certi�cates have occurred. It is thus interesting to analyze which
CAs have issued certi�cates for whom, and whether these certi�cates are used and
issued correctly.

2.2 Related Work

Unifying the storage and analysis of network research data and allowing combination
of disparate data is not a novel idea. [6] proposes a database scheme for sharing such
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measurement data called SIMR. It proposes a more detailed and speci�c database schema
than this work, but has not been implemented.

Examples for implementation of a scheme inspired by SIMR include the Internet Mea-
surement Data Catalog (IMDC) [7]2 and the IST-MOME database [8] [9]. These system
are designed to allow replayability and reproducibility of network research by making
the raw experiment data available to the scienti�c public, and allowing easy integra-
tion of new data sources and measurement types. Both the IMDC and the MOME
database share some characteristics with this project. However, both systems are cen-
trally deployed, and do not o�er programmatic access to parts of the measurement data
— only whole datasets can be retrieved. Additionally, the scope of both the IMDC and
IST-MOME is much bigger than that of this work.

Integrated measurement systems like mPlane [10], PerfSONAR [11] or InterMON [12]
allow centralized analysis of network data as well, but their primary aim is the integrated
creation of more measurement data, and usage of that data for locating and eliminating
network problems, which is not a primary concern of the Empirator system.

In recent years, research centering on full network scans has become more common,
and it is expected a majority of the data in network measurement management systems
system will consist of such scans. Some recent scanning e�orts are described in [13], [14]
and [15]. The results of these scans can be used for a variety of purposes, such as
evaluating performance characteristics or improving network models. Additionally,
organizations like scans.io [16] periodically make measurement data publicly available.

One important application of full network scans is the analysis of security properties of
the internet. Examples for this kind of analysis include [17], [2], [3], [18] and [19].

2http://imdc.datcat.org/

http://imdc.datcat.org/
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Chapter 3

System Design

The Empirator system is designed to allow access to heterogeneous network research
data in a homogeneous way.

Some motivation for design and implementation have been outlined in chapter 1. How-
ever, a more thorough investigation of the goals of this project will help with design.
We will introduce a number of use cases to illustrate the features of Empirator.

The Empirator system can be used for improving existing research: While examining
scan data of some sort (say a SSH key scan) using the Empirator system, a researcher
notices that several addresses in some subnetworks share an implementation �aw (per-
haps weak keys that were generated with insu�cient entropy). By navigating to the
Empirator web interface, and entering some of these addresses, the researcher notices
that reverse DNS data is available for the time period during which the data was col-
lected. He writes a small script that collects reverse DNS data for all networks using the
Empirator system, and notices that most of the addresses’ DNS entries were registered
only a short time before the scan. Thus, one reason for the experiment results could be
some default con�guration in the hosts that will be corrected soon. Here, the Empirator
system, by combining research information, allows more precise research.

Another use of the Empirator system is the creation of new research by correlating
already existing data. While idly browsing the Empirator web interface, a researcher
notices that both SSL scan information and BGP data is contained in the interface. The
researcher writes a script retrieving both SSL certi�cates for a certain time period as well
as BGP announcements for that period. By correlating BGP changes and SSL certi�cates,
the researcher notices a correlation between SSL certi�cates and unrouted pre�xes. This
gives the researcher an idea for an experiment, to research where this correlation does
not hold. Again, this experiment can be executed using the Empirator system.

In addition to support the use cases above, Empirator tries to keep complexity of the
system on a manageable level. While projects such as IST-MOME [9] have more features
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than planned for Empirator, deployment and development of such large and compli-
cated systems often fails. Additionally, introduction of new data is often complicated,
requiring data conversion and rigid adherence to the prede�ned structure of the system.

In contrast, the Empirator system aims for the least necessary complexity, while sup-
porting the use cases described in the previous paragraphs. This does not only in�uence
the Empirator code base, but also the requirements for implementing new data sources:
Simplicity, easy extendability and convenience for researchers are additional aims of
the Empirator system.

The design decisions taken to ful�ll these aims will be described in the next chapters.

3.1 Data Representation

Because the data contained in the Empirator system is heterogeneous, a structured
format for representation of this data is hard to devise. While it is conceivable to
design a structured format for representing the full range of data produced by di�erent
research projects, the extensibility of the system would su�er from such a rigid data
format. Being unable to add new data sources to the system without modifying the
basic data representation would make extending the system very di�cult, and would
thus not be desirable.

In order to design a data representation format, some assumptions have been made
about the data to be stored in the system: We assume most network research data that
falls under the umbrella of the Empirator system will have a common structure. Most
network research experiments consist of a mapping from some target or object to some
data returned by the experiment for that object. Possible targets for such scans include
IP addresses or AS numbers, while possible data includes measurements such as X.509
certi�cate �elds, reverse DNS entries or SSH banners. In the rest of this text, the subjects
of an experiment will consistently be referred to as object, while the general term data
refers to the results of an experiment for a certain object.

It is evident that the number of objects is limited — there is only a small number of
identi�ers that can be targeted by network research experiments. Among these, three
were selected for inclusion in the Empirator system: IP networks, AS numbers and DNS
names. In the opinion of the author, these objects cover a large proportion of network
research, especially those that result in large datasets.

In contrast, the data returned by a scan is di�cult to classify. One can quickly think
of a large number of di�erent experiments that return totally di�erent types of data:
SSL scans map IP addresses or DNS names to certi�cate information, FTP scans map
IP addresses to FTP banners, port scans map IP addresses to open ports or operating
system con�guration.
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Object Timestamp Data items

8.8.8.1/32 2015-04-15 13:30 cert. issuer: cacert.org, valid: false,
. . .

9.9.9.1/32 2015-04-16 13:32 cert. issuer: Thawte, valid: true, . . .

(a) SSL scan: Objects are IP addresses

Object Timestamp Data items

www.google.de 2015-05-15 16:01 A: 216.58.211.3, AAAA:
2a00:1450:4016:803::100f, . . .

net.in.tum.de 2015-05-16 17:22 A: 131.159.15.49, AAAA:
2001:4ca0:2001:13:250:56�:fe9d:955,
. . .

(b) DNS scan: Objects are DNS names

Table 3.1: Data representation example

However, every result of a networking experiment has a single property in common:
the time of its creation (also referred to as “time of observation”). Every measurement
occurred at a certain time, and this timestamp can be immensely useful for analysis and
combination of scan data.

Following from this, a tabular data format will be selected for the Empirator system,
where each measurement point has two �xed properties: the object it refers to (IP
network or address, AS numbers or DNS names) and the time of its measurement. The
actual results of the experiment will be represented in a �exible tabular format. The
data is represented in string format. Choosing a simple string serialization allows the
representation of almost arbitrary data, not restricting the domain of the Empirator
system. Additionally, no serialization process will be proscribed by the Empirator data.
However, by looking at existing data, researchers will be able to standardize on a “core”
of well-known string serialization formats (such as for IP addresses, or time stamps).

An example data representation of two network scanning experiments is shown in
�gure 3.1.

3.2 Data Storage

All data in the system stems from external sources — prior experiments or public re-
search data. The amount of data such experiments generate is potentially very large,
compounded by the fact that keeping historical data is often useful, which again in-
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creases storage requirements. For example, a single IPv4-wide SSL handshake scan [16]
weighs in at about 100 GB1 as compressed data, or about 200 GB without compression.
Similarly, a single BGP routing table dump in uncompressed MRT format2 takes about
500 MB of storage, and multiple such �les are produced every day.

Uncompressed, and with daily scans from several sources, the total amount of data
that would be stored in the system would be so large that only storing the data in the
system would be a challenge, never mind devising a system for querying and retrieving
this data. Moving all data into the system itself would mean either keeping duplicate
data or removing the data from the original experiment. Keeping duplicate data would
consume a disproportionate amount of storage, while removing the data from its original
source would mean removing the data from the original author’s grasp. This would be
signi�cant hurdle for the adoption of the Empirator system.

A better solution is keeping the data in the original storage system, and transferring it to
the user of the system on demand. While this will decrease performance, it signi�cantly
lessens the burden on the data producers, as well as the administrators of the Empirator
system.

3.3 Data Access

The experiment data that will be processed by the system is stored in di�erent data
storage systems with di�erent access methods, like relational databases and plain text
�les, among others. Building a single central component to allow access to all of these
systems (and keeping access methods extensible) would go beyond the scope of this
work.

Additionally, simply accessing the data on a mechanical level would not be enough —
the semantics of the data would be entirely unclear to the system and its users without
extensive con�guration by the original researcher. Again, designing a con�guration
system to describe the semantics of arbitrary data would fall beyond the scope of this
work.

Instead, each data repository will be accessed via its own custom access component,
the adapter. Each adapter is adapted to the repository’s data storage, and contains
knowledge about the semantics and relation of the data items contained in the repository.
While this leads to a higher implementation e�ort by the original researcher, it does
not in any way limit the addition of new data sources.

Having the full power of a programming language available allows any processing
necessary for data access to be implemented in the adapter. Additionally, infrastructure

1https://scans.io/series/443-https-tls-full_ipv4
2http://data.ris.ripe.net/rrc00/2015.04/bview.20150422.0800.gz

https://scans.io/series/443-https-tls-full_ipv4
http://data.ris.ripe.net/rrc00/2015.04/bview.20150422.0800.gz
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that frees the implementer of these access components from the administrative burdens
of communicating with the system and simpli�es accessing the experiment data will be
provided. An adapter together with the data it accesses will be known as data source
(“source” for short) in the remainder of this text.

In order to allow users of the Empirator system to make sense of the data made available
by the adapters, some metadata will be attached to each adapter. This metadata will
describe the available data in a human-readable format. This metadata is only meant to
help human operators of the system interpret the available data and describe possible
values, and is not supposed to be machine-readable.

A machine-readable metadata format for describing data would allow the Empirator
system to automatically convert data into standard formats, or check the validity of
returned data. However, the author argues that using such a strict format would greatly
reduce the �exibility of the system.

3.4 Data Selection and Retrieval

In order to ful�ll its stated functions, the Empirator system must provide functionality
to retrieve a subset of available data. This allows clients to only process data that they
need, and allows targeted research on the data stored in the Empirator system.

Owing to the �exibility of the system, as well as the decentralized nature of its data
storage, only a limited number of selection methods for data can be supported. In
particular, the system will only be able to support selection of data by the shared
common properties of data items — the object and the timestamp of data. Filtering
data by other properties is not possible, because that data is not available to the central
server.

While this might seem limiting in comparison to �ltering possibilities in the original
data storage system (be it a database or binary �les), where the full data of the ex-
periment is available, the retriever of the data can always do any specialized �ltering
locally, after retrieving the data from the Empirator system. Relying on the system to
provide a selection and �ltering interface for all possible data sources would lead to high
complexity and an abundance of corner cases that would make using such a system
di�cult and error-prone.

Supported selection and �ltering operations should include such actions as selecting
all data created in a certain time range, all data regarding a speci�c object or a set of
related objects (such as all data containing entries regarding a speci�c network and all
its subnetworks, or all DNS entries ending in google.com) and any combination of these
properties.
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Combining requirements for decentralized data storage and data selection means that
data selection will either be handled decentrally, by every adapter connected to the
system, or by a central component. Handling data selection in a decentralized fashion
would improve performance for retrieval of data from only a single source, but would
require contacting every data source connected to the system and interrogating it for
available data. Also, this would lead to a duplication of e�orts: Each adapter would have
to implement some sort of indexing solution optimized for the type of data it supports.
Requiring the implementer of an adapter to implement an index would be a signi�cant
e�ort, and thus impact the user-friendliness of the system.

A centralized selection system, on the other hand, would simplify the implementation of
adapters and allow quicker �ltering and selection of available data without contacting
attached adapters for available data.

Implementing a centralized �ltering system requires the introduction of two activities
during the lifetime of the system: Indexing and Retrieval.

During the indexing phase, metadata is sent from the adapters to a central system,
called the index, where it is stored. When data is requested from the system, matching
metadata is retrieved from the index and used to retrieve the actual data from the
connected adapters. We argue that this two-stage approach will allow e�cient storage
and retrieval of data, as well as simplify implementation of additional adapters.

3.5 Filters

Not all interesting network data is available in the form of large data dumps. A lot of
data is primarily available through online services, such as WHOIS data3 or historic
DNS data4. While implementing a proper scan infrastructure consisting of a download
program and an adapter would be the cleanest way to integrate such data into the
Empirator system, allowing external processes to augment data passed through the
system is simpler way of providing access to additional data sources.

This will be done in the Empirator system by a component called �lters in the rest of this
document. This name was chosen purposefully, for the similarity to the Unix concept
of a �lter: A �lter takes some input, processes it in some manner, and then outputs the
result again.

In the case of Empirator, a �lter receives as input the data returned by some query. The
�lter then executes some processing on the resulting data — either augmenting it with
more information, or reducing the data for for some next step. Then, the �lter sends

3Most easily available through the whois command
4E.g. https://dnshistory.org/ or http://whoisrequest.org/history/

https://dnshistory.org/
http://whoisrequest.org/history/
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the data back to the Empirator system to be sent to the client. Clients can choose which
�lters to apply to a query, and can pass arguments to those �lters.

Implementing this feature allows easy access to online data sources and additional
processing that is not supported by the Empirator system directly.

3.6 Toolchaining

Most network research experiments follow a similar process for their execution: Data
is generated by a scan, preprocessed by some program, and �nally saved in an easily
accessible format for analysis. Often, such experiments are executed periodically, to
generate more data and make it possible to discern historical trends or correlations. It is
advantageous to automate the collection of such data. Often, some sort of automation
is already available for data collection.

The Empirator system aims to allow easy integration of such automation into the
system. Thus, Empirator will provide scan implementers with some kind of toolchaining
support: Starting scans and integrating the newly arrived data into the Empirator should
be possible with as little e�ort as possible.

The capabilities planned for toolchaining are support for starting updates and some
mechanism to notify the Empirator system of newly arrived data, enabling quick inte-
gration of new data into the system.
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Chapter 4

System Implementation

Guided by the design considerations in the previous chapter, a system was implemented
that ful�lls the listed requirements. In the next chapter, we will shortly describe the
technology used in the implementation of the Empirator system. Then, in chapter 4.2,
the components making up the Empirator system will be described in detail: The index,
adapters and the user interface of the system will be described in detail. Finally, in
chapter 4.3 the communication protocol used in the Empirator system will be described.

4.1 Core Technologies

The core implementation language for the Empirator system is the Go language1. Go is
a statically typed, compiled, garbage collected language that is designed for building
high-performance concurrent services. The Go language has several desirable features
that ease implementation of the Empirator system: Concurrency support, static typing
and an extensive standard library. External Go dependencies of this project are the pq

library for PostgreSQL database access2 and the zmq4 library for ZeroMQ support3.

Other languages considered for the Empirator core implementation, but ultimately
rejected, were Java, Python and C++, due to performance and complexity concerns.

An additional language used in the system is Python4, an interpreted high-level lan-
guage well suited for exploratory programming. The libraries requests5, ipaddress6,
pytz7 and tzlocal8 for web interface access, IP parsing, and timezone calculations,

1See http://golang.org/ and [20]
2See http://github.com/lib/pq
3See http://github.com/pebbe/zmq4
4see https://www.python.org/
5See http://python-requests.org
6See http://pypi.python.org/pypi/py2-ipaddress/
7See http://pytz.sourceforge.net/
8See http://pypi.python.org/pypi/tzlocal

http://golang.org/
http://github.com/lib/pq
http://github.com/pebbe/zmq4
https://www.python.org/
http://python-requests.org
http://pypi.python.org/pypi/py2-ipaddress/
http://pytz.sourceforge.net/
http://pypi.python.org/pypi/tzlocal
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Figure 4.1: System architecture

respectively.

For communication with adapters over the network, the ZeroMQ9 (or ØMQ) messaging
library was chosen. ZeroMQ is a high-performance, asynchronous, brokerless mes-
saging library consisting of a thin abstraction layer over a socket interface. Reasons
for choosing ZeroMQ include low complexity and high performance. Messaging us-
ing ZeroMQ is simpler than using a socket directly, and signi�cantly less complex
than choosing a higher-level communication system, such as a broker-based messaging
system like RabbitMQ or XML-based systems such as SOAP.

Additionally, for communicating with clients and internal data representation, a JSON
representation for data was chosen. Reasons for this were the low e�ort for serializing
and deserializing JSON objects into normal objects, as well as good support in the
standard libraries of the chosen implementation languages.

4.2 System components

The main components of the Empirator system are the following: The Index, consisting
of a core, index front- and backend, adapters and user interfaces, also called frontends.
Each of these components and the relations between them are depicted in �gure 4.1.

9see http://zeromq.org/

http://zeromq.org/
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Figure 4.2: Adapter states

The index is the central component of the system. Filters, the index database and the
index core will be described in section 4.2.1. The index maintains a connection to each
adapter, mediates data retrieval and post-processing, and provides a way to access that
information for user interfaces.

Adapters allow accessing data sources, supporting both indexing and retrieval. Their
general structure and functionality will be described in chapter 4.2.2. Additionally, two
available adapters and some of their implementation details will be described.

Finally, user interfaces allow users to access the data contained within the Empirator
system. The implementation of user interfaces and two available user interfaces will be
described in chapter 4.2.3.

Adapters and server are connected over the network.

4.2.1 Index

The index is the core component of the Empirator system. Guided by the considerations
in chapter 3, the index orchestrates the selection and retrieval of data from data sources.

The index has three major functions: Maintaining a connection with clients and adapters,
storing indexing data, and making that data available for retrieval. These responsibilities,
as they apply to adapters, will be described in more detail in the next chapters, while
frontend functionality provided by the index will be described in chapter 4.2.3.

An adapter connected to the Empirator system is always in one of four di�erent states:
Registered, Indexing, Indexed or Retrieving. These states and the available transitions
between them are illustrated in �gure 4.2.

When initially connecting, an adapter is in the Registered state. No indexing has taken
place on the adapter yet, and no data can be retrieved. When indexing on an adapter is
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started, it transitions into the Indexing state, during which indexing data is sent to the
server.

When an adapter has �nished indexing, the state of the adapter transitions to the
Indexed state. This is the “default” state for connected adapters, and when reconnected,
the adapter will be transitioned to the Indexed state directly, without requiring a new
indexing.

Finally, when data is requested from an adapter, the adapter transitions to the Retrieving
state. In the Retrieving state, the adapter sends data items to the server. After all
data has been sent by the adapter, the adapter transitions back to the Indexed state,
and retrieving or indexing can be started again. There is no “Toolchaining” state in
this diagram, because the toolchaining status of adapters is not kept on the server.
Toolchaining is implemented entirely on the adapter side, and thus the server does not
need to keep track of the current toolchaining state.

As can be seen in �gure 4.2, an adapter is either in the indexing or retrieving state,
never both. This entails that no data can be retrieved from the adapter while it is being
indexed. This limitation was chosen because it makes adapter behavior much easier to
reason about, and signi�cantly decreases implementation complexity of both adapters
and server.

Both indexing and retrieval can be canceled: If a cancellation message is received by
the adapter during indexing or retrieval, all work is aborted and the adapter returns to
the Indexed state.

All connected adapters (regardless of state) are contacted regularly by the server to test
whether they are still connected. If no reply is received for a certain time, the adapter
is marked as disconnected, and indexing or retrieval is canceled.

4.2.1.1 Adapter Implementation

Adapters need to register with the server prior to any system actions taking place. This
is done by sending a registration message to the server. This registration message
contains the name of the adapter, the supported object types of the adapter (a subset
of IP networks, DNS names and AS numbers) and a human-readable description of the
data provided by the adapter (the metadata mentioned in chapter 3.1). This metadata
consists of a list of string pairs, describing the mnemonic names of the adapter’s data
items, as well as a plaintext description of their content. For an example description, as
could be sent by an adapter allowing access to port scan data, see table 4.1.

Adapters need not be precon�gured: Adapters, once registered, are automatically stored
and recon�gured when the index service is restarted. This eases connection of new
adapters. An implementer must simply code an adapter with the correct implementation,
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Name Description

name This column contains the DNS name of the
scanned host

duration This column contains the time it took to
completely scan the host

ports The list of open ports for this host,
separated by commas.

os The operating system for this host.

Table 4.1: Example description

con�gure the index address and start the adapter. The adapter will register with the
index, and be available for all future system actions.

4.2.1.2 Indexing

During indexing, information about available data is retrieved from adapters and stored
in the index database. This information consists of the “common properties” described
in chapter 3.1 (object and timestamp) and a key.

While the object describes the target this data is associated with, and the timestamp
describes the date of observation, the key is an adapter-speci�c value that is provided
to the adapter to retrieve the associated data item. Since this key is totally opaque to
the server, it is handled as a binary value. The key for an adapter for reading plain-text
�les, for example, could be generated from a combination of �lename and line number
describing the location of a set of data.

The combination of adapter name, object, timestamp and key will be termed index item
during the rest of this document.

Storing only a key and not full data allows e�cient data retrieval from heterogeneous
sources such as databases, where a table’s primary key can be used as the key, or
plaintext �les, where line numbers or byte positions can be used, and reduces the
amount of data stored in the central index database. Allowing the adapter to generate
the key allows storing arbitrary location information for data, which allows adapters to
be implemented for accessing data stored in all kinds of forms.

Indexing a single adapter consists of the following steps:

• Starting indexing on adapter

• Receive index items from adapter

• Save index items to database
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• Wait for completion indication from client

This process is pipelined: While items are being inserted into the database, more items
are already being read from the socket, and more items are being sent by the client.

Indexing can be run more than once: Whenever new data is available, an indexing run
must complete before the new data is accessible in the system. To prevent multiple
index entries referring to the same data, a timestamp is used when starting indexing on
a client. Only items whose timestamp is later than the speci�ed date should be sent by
the client.

An adapter can choose to associate several time/object tuples with a single key (key
batching). When data is requested from the index, the index selects all keys for matching
objects from the database. When the full data is retrieved from the adapter, it is post-
processed to remove any data not matching the request. This allows every adapter to
assign an arbitrary number of items to each key, allowing it to exploit relations between
data items (such as being saved on adjacent lines in a data �le) and reduce the amount
of key data contained in the index database.

At any time during the indexing process, the adapter can send an error message to
abort the indexing. All items received so far are discarded, and the adapter is reset to
its regular state. If the adapter is disconnected during indexing, the indexing process is
aborted as well, and no data is written to the database.

The received index items are stored in the index database, which is described in the
next chapter.

4.2.1.3 The Index Database

The index database stores the data retrieved from adapters during indexing. It is im-
plemented using the PostgreSQL10 database. Reasons for the selection of a relational
database system were familiarity with the database system, and the good �t of the
processed data with the relational paradigm.

A diagram of the database layout can be found in �gure 4.3. The “source” table stores
information about connected adapters and their metadata, while the “items” table stores
index items.

In the source table, the index stores the name, the supported types, the description of a
source and when the source was last updated. When the index is started, this data is
read from the database. When an adapter connects to the system, the stored data (if
present) for that adapter is retrieved and associated with the newly connected adapter.
This way, information such as the last indexed timestamp can be stored persistently.

10http://www.postgresql.org/

http://www.postgresql.org/
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Figure 4.3: Index database layout.
“Item”, “key” and “object” tables are duplicated for each supported object type (IP, AS

and DNS).

An index item is stored as an association between timestamp, object and key. The value
of each of these properties is stored in a di�erent table, which was done to allow “key
batching” as described in the previous chapter.

When a client requests data, the index database is used to collect all keys associated to
data matching that request, and the keys are used to collect the data from all adapters.

New index items are added to the index database during indexing, and source informa-
tion is updated whenever indexing completes successfully, or when the index is shut
down.

4.2.1.4 Filters

The design of �lters in the Empirator system is described in chapter 3.5. Filters are
implemented in the Empirator system in the following way:

Each �lter consists of a con�guration �le describing the �lter, and a �lter binary doing
the actual �ltering. The �lter con�g �le is a JSON �le that needs to contain the following
settings:

BinaryPath The path to the �lter binary.

WorkDirectory Which work directory to use while executing the �lter.

Description A human-readable description of the �lter’s e�ects and usage. Should
include a description of the �lter argument format.
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Object Adapter Timestamp Data items

www.google.de Adp1 2015-05-15 16:01 A: 216.58.211.3, AAAA:
2a00:1450:4016:803::100f, . . .

net.in.tum.de Adp1 2015-05-16 17:22 A: 131.159.15.49, AAAA:
2001:4ca0:2001:13:250:56�:fe9d:955,
. . .

(a) Data before �ltering.

www.google.de Adp1 2015-05-15 16:01 A: 216.58.211.3, AAAA:
2a00:1450:4016:803::100f, A-rdns:
muc03s14-in-f3.1e100. net.,. . .

net.in.tum.de Adp1 2015-05-16 17:22 A: 131.159.15.49, AAAA:
2001:4ca0:2001:13:250:56�:fe9d:955,
A-rdns: typo3.net.in.tum.de.,. . .

(b) Data after �ltering with the reverse-dns �lter. The �lter was passed “Adp1:A” as argument.

Table 4.2: Data �ltering example

When run, the index reads all “.conf” �les in a con�gurable subdirectory, and lists those
�lters as available by the user.

When data is �ltered, the �lter binary is executed, with the command line arguments
selected by the user, and data is piped into the �lter via its standard input. If the �lter
encounters an error making it unable to process the data, it should exit with a non-zero
exit status, and print an error to standard error. This error will be shown to the client.
If no error occurred, the �lter should send the data to its standard output.

A �lter can modify input data in any way, appending new data columns to each data
item, adding entirely new objects or adding data items to certain objects. Two �lters
are currently implemented: “as-name” calls whois AS<AS number> for a con�gurable
number of data item columns, while “reverse-dns” adds reverse DNS entries for spec-
i�ed columns to the data item. Both �lters can be con�gured using arguments of the
following form: <adapter name>:<column_name>[,...], which means that the column
with name <column_name> is processed by the �lter for every data item from the adapter
<adapter name>. An example for data �ltering using the reverse DNS �lter can be seen
in table 4.2. The top table shows the data before �ltering, while the bottom table shows
data after �ltering. The �ltered data now contains a reverse DNS entry for every A
entry contained in the data previously.

Note that a �lter always receives the full result set of a query. This means that running
�lters on large queries may lead to excessive memory use by the index.
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4.2.1.5 Queries

Guided by the considerations in chapter 3.4, a method of querying was designed for the
Empirator system. A query is used to select the data a client wants to retrieve. Each
query consists of a “selector”, an object type and optional arguments to the query. The
selector describes which data to select from the system, the object type describes the
types of objects returned by the query, and arguments modify the query itself (used for
limited and �ltered queries, described later).

The Empirator system supports three di�erent types of selectors:

Object-speci�c For selecting data based on the object. Examples include selecting
all data with a selected IP address, or all data where the DNS name matches
“*.google.com”.

Object-agnostic For selecting data based on object-independent properties. Examples
include selecting data based on timestamp, or based on the adapter name which
stores that data.

Boolean For combining queries from the previous categories. Examples are AND, OR
and NOT.

A query consists of an arbitrary combination of these selectors, where only object-
speci�c selectors with the same object type as the overall query can be used.

For a full list of available selectors, see table 4.3. When data is requested from the index,
the query contained in that request is translated to SQL and passed to the index database.
Data is requested from the client, and the retrieved data is passed through the query
again. This removes data potentially added by key batching. Then, the data is passed
back to the user.

The Empirator system o�ers di�erent types of queries to ful�ll di�erent requirements.
The available query types are:

Standard Retrieve all data matching the provided selector.

Limited Retrieve a limited number of data items from the index. Limit is given as
argument.

Filtered Retrieve all data matching the provided selector, and apply �lters. Filter names
and arguments are given as query argument.

Count Count the number of items in the database that match the speci�ed selector.
No retrieval takes place.

Note that Count query might have confusing results due to clients potentially returning
more than one data item for an entry in the index database. The results of a count query
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Name Arguments Description

IP_CONTAINS CIDR network Select all data items having an object that
is a subnet of the argument.

IP_IS_CONTAINED CIDR network Select all data items having an object which
the argument is a subnet of.

IP_EXACT CIDR network Select all data items having the same object
as the argument.

AS_EXACT AS number Select all data items having the same object
as the argument.

DNS_EXACT DNS name Select all data items having the same object
as the argument.

DNS_LIKE SQL “like”
expression

Select all data items having an object that
matches the “like” expression.

TIMESTAMP_AFTER timestamp Select all data items that have a timestamp
after the argument.

TIMESTAMP_BEFORE timestamp Select all data items that have a timestamp
before the argument

SOURCE_EXACT source name Select all data items that were created by
the adapter with the name of the argument.

AND Two subqueries Select all data items that match both
subqueries.

OR Two subqueries Select all data items that match either of
both subqueries.

NOT One subquery Select all data items that do not match the
subquery.

Table 4.3: Available data selectors

mean that a standard query with the same arguments will always return at least as
many items as the result of the count query.

The availability of these selectors goes a long way towards alleviating the reduced
selection possibilities of the Empirator system caused by decentralized data storage.

4.2.1.6 Retrieval

Retrieval works similarly to indexing, but across several adapters, since data from
multiple adapters might be received.

When data is requested by a client, all index items in the index database matching the
request are selected, and the keys are dispatched to the correct adapter. In response,
the adapter sends over the actual data. The index then collects and post-processes that
data. Post-processing includes merging data from di�erent sources and �ltering out
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Object Adapter Timestamp Data

8.8.8.0/24 Adp. 1 1970-01-01T12:30:00Z Origin: EGP, MED: 3, . . .
1970-01-01T12:35:00Z Origin: IGP, MED: 100, . . .
1980-01-01T12:30:00Z Origin: IGP, MED: None, . . .

Adp. 3 1980-01-02T12:32:00Z OS: unix, Ports: 21,22,23,. . .

8.8.9.9/32 Adp. 2 1980-01-01T12:30:00Z Error: None, Traceroute: . . .
1970-01-01T12:40:00Z Error: None, Traceroute: . . .
1970-01-02T12:50:00Z Error: None, Traceroute: . . .

Adp.3 1980-01-01T12:31:01Z OS: unix, Ports: 22,80,8080,. . .

Table 4.4: Data representation in the Empirator system

non-matching items introduced by key batching. If �ltering is requested by the client,
the data is passed through all �lters that have been selected by the client, and then made
available to the client.

Similarly to indexing, retrieval is pipelined: While the adapter is sending data, the server
is already post-processing the data stream and making it ready for retrieval by the client.

Retrieved data is handled in a format that will be termed data item in the rest of this
document, analogously to “index item”. A data item consists of an object, a timestamp
and a list of strings containing the data. We did not proscribe standard ways to encode
data in string format, since this would again reduce �exibility of the system. We argue
that newly implemented adapters will serialize data in a similar format to existing
adapters, thus leading to a set of standard serialization formats (such as serializing IP
addresses with a netmask, or using RFC3339 format as the standard timestamp format).

A collection of data items is organized as shown in table 4.4: First by the object of the
data item, then by the source the data item came from. Each line in the table displays a
single data item.

4.2.2 Adapters

While the index is the core of the Empirator system, adapters serve to make it useful.
An adapter is the custom code required to access data and connect it to the Empirator
system.

For fully participating in the Empirator system, an adapter must be able to do the
following things:

1. Maintain a connection to the server

2. Register with the index
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func (a *MyAdapter) GetIndexItems(last_indexed time.Time,

output chan<- *objects.IndexWithError,

cancel <-chan interface{}) {

//Implement generation of index item here

}

func (a *MyAdapter) GetDataItems(objtype objects.ObjectType,

keys []Key,

output chan<- *objects.DataWithError,

cancel <-chan interface{}) {

//Implement retrieval of data items here

}

func main() {

adapter := MyAdapter{}

c := client.NewServerClient(&adapter, "serveraddress", "")

c.SetSourceInfo("AdapterName",

[]objects.DescField{

objects.DescField{"Field 1", "Description 1"},

objects.DescField{"Field 2", "Description 2"}},

objects.OBJECTSET_IP)

c.Loop()

}

Listing 1: Sample adapter code

3. Send index items

4. Receive keys and returning data

Optionally, an adapter can support toolchaining as described in chapter 3.6.

All existing adapters are programmed in Go. For implementing new adapters in the
Go language, extensive support code is provided that greatly reduces the burden of
implementing new adapters. Items 1 and 2 are taken care of by the adapter support code:
Networking (i.e. responding to pings in a timely fashion, as described in chapter 4.3) is
entirely automatic, and network registration consists of a single function call into the
provided support code. An example adapter skeleton is shown in listing 1.

This code (with added imports and error handling) is already a fully functional, albeit
quite useless, adapter. If indexing is requested, success is immediately signaled to the
index without sending any keys. If keys are requested, no data is sent in reply. The
Loop() function takes care of keeping the adapter connected to the server, item sending
and receiving as well as cancellation.

The only di�cult implementation work needing to be done by the user are the GetIndexItems
and GetDataItems functions.
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The GetIndexItems function is used for generating index items. The last_indexed

argument tells the adapter which index items to send to the server. All index items that
have been observed later than the last_indexed timestamp must be sent to the server.
The output argument is the sink for index items. The channel is automatically closed
when the function returns, or an error is sent by the adapter code. The cancel channel
is used for canceling a running indexing progress. When the cancel channel is closed,
the adapter implementation should return as soon as possible and clean up all open
resources.

The interface of the GetDataItems function is very similar. The objtype argument
identi�es the type of object to retrieve, while the keys argument contains the adapter-
speci�c key needed to retrieve the data. Again, data should be sent to the output

channel, which is automatically closed when the function returns or an error occurs.
The cancel channel is used identically to the GetIndexItems function.

For implementing these functions, the implementer has to make a decision about the
keying scheme used in the adapter: A key needs to uniquely identify a data item, and
should be as compact as possible to reduce the size of the indexing database. Another
consideration should be providing e�cient access to the data source. This works di�er-
ently for every storage system, and thus, no general guidelines can be given here. For
examples of keys, see chapters 4.2.2.1 and 4.2.2.2.

// Creating a key

var schemaname string = "test schema"

var host string = "test host"

var port uint16 = 443

var key []byte = client.ToKey(schemaname, host, port)

somedata := []byte{

// Some binary data

}

// Read into schemaname, host and port

client.Key(somedata).Scan(&schemaname, &host, &port)

Listing 2: Sample code for key serialization and deserialization

Since keys are implemented as byte arrays, an adapter implementer can manually
generate keys in any format they wish. Empirator o�ers some infrastructure to help
with key generation, however: Using the ToKey() and Key.Scan() functions, a number
of data types can be transparently converted to and from byte arrays. ToKey() is called
with a variable number of arguments, and serializes them to bytes. Currently, ToKey()
supports signed and unsigned integers between 8 and 64 bit, strings and booleans.
Integers are serialized in big-endian format, while strings are serialized using a 16-byte
length �eld. Key.Scan() allows easy conversion in the opposite direction. Care must be
taken to always serialize and deserialize variables in the same order, since no integrity
checking is done by the key helper functions. For an example usage of ToKey() and
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Key.Scan(), see listing 2.

Adapters can also implement toolchaining support. When a certain message is received
from the server, an adapter supporting toolchaining should execute a script which
generates new data. Examples include downloading new data from online sources, or
executing some kind of scan. The update script can receive a number of parameters
during execution, which are sent to the binary’s standard input. The script to be executed
can be passed as the �nal argument to NewServerClient(). If the empty string is passed,
toolchaining is not supported.

When implementing an update script, care must be taken to allow updating while an
indexing process is running. Indexing of duplicate items due to modi�cation of the data
currently being indexed should be avoided at all costs. Also, newly downloaded data
should be available to the adapter immediately, without changing any con�guration in
the adapter. If a scan creates a new database, for example, the adapter must somehow
be noti�ed of this newly created database. In the next two chapters, the design and
implementation of two currently available adapters will be described in more detail.

4.2.2.1 BGP Adapter

The BGP adapter currently available for the Empirator system is con�gured to index
BGP dumps in the MRT format made available by projects such as Route Views11. The
Route Views project runs a number of collectors that participate in the BGP protocol,
and periodically makes their routing database and BGP interaction publicly available.
Every two hours, a new full RIB dump is generated, and every 15 minutes, BGP routing
updates received during the last 15 minutes are output.

These output �les are stored in the MRT format. MRT is a binary format speci�ed in
RFC 6396 [21] for storing BGP protocol dumps. These BGP �les are compressed via
GZIP to reduce storage requirements. The information contained in these �les can be
read by using the bgpdump12 tool.

A MRT �le can contain a variety of information, depending on the type of entry. The
BGP data adapter analyzes three types of entries in a MRT �le: Announce, Withdraw
and Dump. Announce and Withdraw correspond to the pre�x updates carried in a
BGP Update message described in chapter 4.2.2.1, while the Dump entry type does
not correspond to a BGP message, but describes a special entry for storing the router’s
current RIB. Thus, Dump entries always describe the current state of the router’s routing
database, while Update and Withdraw messages correspond to actual received BGP
messages.

11see http://www.routeviews.org/
12available at https://bitbucket.org/ripencc/bgpdump/wiki/Home

http://www.routeviews.org/
https://bitbucket.org/ripencc/bgpdump/wiki/Home
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For the purposes of the Empirator system, we map the pre�x an announcement refers to
to the object, and use the time of the dump as the timestamp, while the rest of the data
will be treated as data items. Thus, the BGP adapter supports objects of the IP type.

A full description of the BGP adapter data layout can be found in table 4.5.

Column name Column description

src_ip The source IP of this database entry.
src_as The source AS of this database entry.
prefix The pre�x this entry refers to. Used as ob-

ject of data item.
as_path The AS path this route takes to the target

pre�x.
origin The origin of this message.
nexthop The next hop address for this pre�x.
localpref The local preference value of this entry.
med The multi exit discriminator.
communities The community string for this entry.
aggregated Whether this message was aggregated or

not.
aggregator The aggregator of this message.
type Type of entry (Dump, Announce or With-

draw).
mod_time The last modi�cation time of this entry.

Table 4.5: BGP adapter data format

The key used by the BGP adapter for data item identi�cation is the line number and
�le name where the data is stored, as well as the number of lines used for key batching.
The BGP adapter implements key batching by associating a �xed number of entries in
the BGP dump �le with a single key. In the current implementation of the BGP adapter,
the data contained in three adjacent �les are associated with a single key.

To allow quicker data retrieval, data is preprocessed upon retrieval: The bgpdump
command is called to dump the data in a machine-readable format, the output is split
into a certain number of smaller �les, and the output is compressed again. This removes
the need to open and decompress the large original �le. Also, this does not require calling
the bgpdump binary during data retrieval. Files are kept in a compressed format because
MRT data compresses very well (with a factor of about 10), and keeping uncompressed
�les would quickly use up a prohibitive amount of storage (a single database dump from
a well-connected observer takes about 500 MB of storage space in uncompressed form).

When the BGP adapter receives a START_INDEX message from the server (see chapter 4.3
for a complete overview of the protocol), all �les with a modi�cation date later than the
last indexed date are selected, and index items are generated from the data contained in
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the MRT �le. Each index item contains the pre�x contained in the entry as object, and
the modi�cation time of the �le as timestamp. Keys are generated as described above.

When data is retrieved from the adapter, the received keys are decoded, all keys contain-
ing data from the same �le are sorted, and data is then read from the �le in ascending
order. This avoids having to do heavy seeking during key retrieval.

The BGP adapter is set up to do automatic data retrieval using the toolchaining support
in the Empirator system. A script is invoked whenever an update is requested by the
server. This script downloads the newest BGP dumps from the Route Views project,
preprocesses it into smaller �les and saves them in a directory accessible to the adapter.
When the adapter is indexed, all new data is automatically included, and can be processed
by the Empirator system.

4.2.2.2 SSL data adapter

Another adapter was implemented for reading the SSL data collected in [22]. The project
scanned a wide variety of hosts, and collected the returned X.509 certi�cate data. The
stored information included both a mapping from IP addresses to X.509 information, as
well as a DNS scan, which resulted in a mapping of DNS data to X.509 information. The
SSL adapter supports accessing both types of data. SSL scan data is stored in a database,
so the primary key of the hosts table works well as a key: It identi�es a unique data
item and allows e�cient retrieval. A combination of host and port number is used in
keys for IP data, and a combination of hostname and port number for DNS data is used
in the DNS data keys. Additionally, the database uses schemas to separate scans from
each other. Since a host can be present in multiple scans, the schema will additionally
be stored in the key to di�erentiate between di�erent occurrences of the same object.

Due to the data being stored in a database, indexing is rather simple: Select all hosts
from every schema, generate a key and send it to the index. When retrieving, schema
name, host and port are extracted from the key, the schema is opened in the database,
and the relevant information is selected with a simple SQL statement.

The adapter supports all data that is described in [22].

4.2.3 Frontends

Frontends allows users to access the data contained in the Empirator system. Two types
of frontends are currently supported: A web frontend for sighting available data and
executing simple queries, and a Python module for exploratory programming and more
complex analysis. Both web frontend and the Python module access the Empirator
server via a JSON web interface.
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URL Method Arguments Description

/sources GET None Lists names of connected
sources.

/sourceinfo GET source=<sourcename> Returns information about
named source.

/startindex POST source=<sourcename> Starts indexing of the
named source.

/query POST query=<query> Starts a query.
/indexprogress POST identi�er=<sourcename> Returns information about

the running indexing
process.

/getdata POST identi�er=<identi�er> Returns information about
the running retrieval
process and available data.

/startupdate POST source=<sourcename>,
parameters=<parameters>

Starts the toolchaining
script on the named source.

/cancelindex POST source=<sourcename> Cancels the indexing
process on the named
source.

/cancelretrieve POST identi�er=<identi�er> Cancels the retrieve process
with the named identi�er.

/filters GET None Lists all available �lters.
/filterdesc GET �lter=<�ltername> Gets the �lter description of

the named �lter.

Table 4.6: Web HTTP API calls

The JSON interface makes all actions of the Empirator accessible over the network. A
complete list of API call with their description and arguments is available in table 4.6.
The term “source” is used here instead of adapter, since from the client’s view, data
comes from some data source that happens to be provided by an adapter.

The /sources and /sourceinfo calls are used to get an overview of connected sources
and available data.

The /startindex command initiates indexing a speci�ed source, which can be useful
for sources that are not automatically indexed. If an indexing process is started, the state
of the process can be retrieved from /indexprogress. Available information includes
the number of indexed items, any errors that caused termination of the indexing process,
whether the process is �nished and the start and stop times of the process. An indexing
process can be canceled by calling the /cancelindex URL.

The /query, /getdata and /cancelretrieve commands allow the same actions for data
retrieval operations. However, instead of a source name, they take an “identi�er” as
argument. The identi�er is a server-generated key that is used for processes. Each
retrieval process is assigned a separate identi�er, and returned to the user when a query
is started via /query. The /getdata command returns meta information about the
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Query

{"Type": "<querytype>", "Objtype": "<object type>",

"Limit": 10,

"FilterNames": ["filter1","filter2"], "FilterArgs": [["args1"],["args2"]],

"Query": "<selector>"}

Selector

{"QueryType": "<selector type>",

"QueryObject": "<query object>",

"Left": "<left subselector>", "Right": "<right subselector>"}

Table 4.7: Query JSON format

retrieval process (such as number of retrieved items, start and stop time, and any errors
encountered during retrieval) and the data that has been collected so far. After the
client has retrieved the data, it is deleted on the server side to conserve memory. The
/getdata command thus has a side e�ect, unlike the /indexprogress command.

The /startupdate command starts the update script for the given adapter, passing the
parameters (a string list) to the script’s standard input.

Finally, the /filters and /filterlist list the available �lters and allow retrieving
�lter information for the speci�ed �lter.

Queries and data are also encoded in a JSON format. Queries use the JSON format
described in table 4.7. The “<query type>” parameter is one of the supported query types
(Limited, Standard, Count or Filtered). The “Limit” and “FilterNames” and “FilterArgs”
parameters need only be present if the query is of the corresponding type. If the
“Query” elemnt is omitted as well, the query applies to all the items in the database.
The “<selector type>” argument is one of the selector names described in table 4.3. The
“Left” and “Right” arguments are required if the selector is a boolean selector, such as
OR, while the “QueryObject” argument is required for all other selectors.

The data format used by the web frontend is similar in structure to the data storage
used internally by the system, described in table 4.4. Data is returned as a JSON object,
which has the objects contained in the data as attributes. These attributes contain
another JSON object, which have the adapter names which returned data for this object
as attributes. Finally, the value of each of these attributes is a list of JSON objects having
a “Time” and “Data” object, where the “Time” property contains the time of observation
of the data, and the “Data” object contains a list of strings corresponding to the data
returned for this object. Additionally, the list of column names for each adapter is
contained in the “Column” attribute of the encoded data, which allows clients to access
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{"Columns": {

"BGP_Adapter": ["prefix","origin","src_as","..."],

"SSL_Adapter": ["akid", "ca", "cert","..."]},

"Data": {

"8.8.8.8/32": {

"SSL_Data": [

{"Time":"2015-05-03T17:22:33Z",

"Data": ["1","CaCert.org","--BEGIN CERTIFICATE...","..."]},

{"Time":"...",

"Data": ["..."]}]},

"8.8.8.0/24": {

"BGP_Data": [

{"Time":"2015-06-30T17:30:22Z",

"Data": ["8.8.8.0/24", "IGP", "35","..."]}]}}}

Listing 3: Data JSON format

the columns in the returned data by name. An example of this structure can be seen in
listing 3.

4.2.3.1 Web Frontend

While the JSON interface of the index can be used manually via tools such as curl

or wget, this is not very comfortable for deeper exploration of the data o�ered by the
system.

In order to provide a solution for low-e�ort exploration of available data sources and
data, a web interface was implemented in JavaScript, using the REST interface described
in the previous section.

The web interface allows a user to look at the structure of data contained in the di�erent
data sources, and also retrieve samples of the data.

In �gure 4.4, a screen shot of the data sighting interface is shown. In the top naviga-
tion bar, all connected sources are listed. A click on the source name displays status
information about the sources in the main display area.

The information displayed contains:

• The supported object types (a subset of IP,DNS and AS)

• The current source state (see chapter 4.2.1)

• When this source was last indexed.

If the source is currently being indexed, statistics about the current index progress
are displayed. Indexing and toolchaining of the source can be started with the “Start
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Figure 4.4: The data sighting screen

indexing” and “Start update” buttons.

Below the source information, the data structure of the source is displayed. Each element
of a source’s data is listed with its short name and the description given to it by the
adapter implementer.

On the bottom row, buttons for updating the display, showing the data selection interface
and showing the �lter listing interface are shown. The �lter listing interface shows a
list of available �lters with the description con�gured by the �lter author.

Clicking the “Show Data” button takes the user to the data selection screen shown in
�gure 4.5.

In the data selection screen, sources can be searched for data. The input �elds at the top
of the interface are provided for object selection: The object is entered in textual form
in the �rst text �eld, the type of item needs to be selected in the selection box, and one
or more sources to retrieve data from can be selected in the selection box. A maximum
number of items to retrieve can be selected in the number entry box.
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Figure 4.5: The data selection screen

Additionally, the “Add Filter” and “Delete Filter” buttons allow the application of �lters
to the search result. Multiple �lters and arguments can be chosen for processing the
resulting data.

On clicking the “Submit query” button, the data for the speci�ed object is retrieved and
displayed to the client.

Below the �lter buttons, the state of the retrieval process is displayed. It is updated
periodically while the retrieval is in progress.

Below that is the data display. Data is displayed sorted by object and source name. For
each source, the available data for the object is displayed in the table columns. Data is
sortable by observation time or data values by clicking the “Time” column or one of the
data columns. Below the data table, the total number of items available in the database
is displayed. Finally, the buttons in the bottom row allow switching the user interface
back to the data sighting screen, or to a �lters display. The “Download data” link allows
the user to download the data of the last query as a JSON �le.

4.2.3.2 Python Module

For more complex analysis of the available data, a Python module that allows easy
access to the data available in the Empirator system is provided. The module allows
convenient access to all commands implemented in the JSON interface. Reasons for the
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choice of Python include its wide usage in the scienti�c programming community, and
very good support for graphing and multi-dimensional arrays.

The Python module o�ers object-oriented access to retrieve and indexing progress, re-
trieved data encoded into python structures with simpler access methods (such as asking
for data by column name, or retrieving all data for a certain object) and function-based
construction of queries. Both synchronous and asynchronous data access are available
for queries. If data is retrieved synchronously, a complete set of data is constructed
by the module, and returned to the client after the query has �nished. This allows the
client to process a full set of data. Asynchronous access can be used to receive data in a
“piecemeal” fashion. Whenever data is available, a callback function is called with the
retrieved data. This is repeated until the query has �nished.

The Python module o�ers both a function-oriented interface as used in the example
code in the “comfort” module, and an object-oriented interface in the “access” module.
The object-oriented module o�ers a thin abstraction layer over the JSON interface:
An access object is constructed, and operations Empirator system can be executed by
calling methods on that access object. The “comfort” module maintains a single global
connection to the system, and functions allow interaction with the Empirator system.
Additionally, the “comfort” module provides a number of convenience methods for
retrieving data both synchronously and asynchronously, as described above.

A sample program using the comfort interface can be seen in listing 4.

4.3 Communication protocol

To enable communication between data sources and the central server, a simple com-
munication protocol was devised. Because the networking layer of the system is based
on the ZeroMQ messaging library, implementation e�ort was low. The data source or
adapter will be referred to as client in the following section, because the adapter-index
connection implements a client-server architecture. This “client” should not be confused
with the use of “client” in the previous chapter, which describes a user of the Empirator
system.

Using the DEALER/ROUTER13 architecture of ZeroMQ allows implementation of a
regular server/client infrastructure using an abstracted address called “identity”. The
DEALER/ROUTER con�guration makes it possible for server and client to communi-
cate asynchronously. Data framing, non-blocking IO, bu�ering and routing concerns
are taken care of as well by the ZeroMQ implementation, which means that actual
implementation of the protocol mostly consisted of devising a serialization scheme for
messages from and to byte arrays.

13http://zguide.zeromq.org/page:all#Shared-Queue-DEALER-and-ROUTER-sockets

http://zguide.zeromq.org/page:all#Shared-Queue-DEALER-and-ROUTER-sockets
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#!/usr/bin/python

from comfort import *
import query as q

import objects as obj

import re

from collections import Counter

connect("localhost:5556")

query = q.Query(obj.OBJECT_IP, q.SourceExact("BGP_Data"))

as_count = Counter()

def count_it(retrieved):

data = retrieved.data()

for ob in data.objects():

for source, objdata in data.object_data(ob):

for (timestamp, final_items) in objdata:

aspath = final_items[3]

for asnum in re.split("\s+|,",aspath):

asnum = asnum.strip("[{}]|")

try:

as_count[int(asnum)] += 1

except ValueError:

print "Invalid AS number %s" % asnum

call_with_data(query, count_it)

print as_count.most_common(10)

Listing 4: Sample program using the Python module

Messages are pre�xed with their type, and the rest of the message is deserialized ac-
cording to the message type. Note that “administrative” data such as serial numbers or
a total length �eld are not included in the message — ZeroMQ takes care of message
framing, and serial numbers are already used in the TCP protocol used by ZeroMQ.

Ten types of messages are used in the Empirator system, listed in table 4.8.

The messages PING and ACK are used for client and server liveness checks: The server
sends a ping to each connected adapter every two minutes. If an ACK message is not
received from the adapter in a certain time (30 seconds by default), the adapter is seen
as disconnected. If the adapter has not received a ping from the server in a certain time
interval (5 minutes by default), the server is presumed dead, and the client exits. These
intervals were chosen to not generate an undue amount of network tra�c, but still allow
checking of connectivity. A standard disconnection mechanism is not implemented for
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Message type Description

REGISTER_SOURCE Registers a new source with the index.
START_INDEX Requests a data source to send index information.
REQUEST_DATA Requests a data source to send data for the speci�ed keys.
PING Request an ACK from the client as soon as possible.
ACK Reply for PING requests.
RESULT Used for indicating completion of indexing or retrieval, or

cancelling indexing or retrieval.
INDEX_ITEM Message for sending a single index item to the index.
INDEX_REQUEST Used by adapters to request being indexed.
ITEM_DATA Message for sending a single data item to the index.
GET_INDEXITEMS Used by the server to request a number of index items from the

client.
START_UPDATE Start the toolchaining script on the client.

Table 4.8: Message Types

clients, as clients should only disconnect from the server by either user interference or
network problems.

The core messages of the protocol are REGISTER_SOURCE, START_INDEX and REQUEST_DATA.
REGISTER_SOURCE allows sources to register with the server. A REGISTER_SOURCE mes-
sage contains a list of the object types supported by the adapter, a short description of
the data as well as the source name. This allows new adapters to connect to the server,
and immediately participate in the system, without any con�guration on the server
side.

START_INDEX alerts an adapter that it should start indexing. The message contains a
timestamp which indicates when this adapter was last indexed. No index items about
observations before that time point should be generated, but all data created since then
should be sent to the server.

The GetIndexItems function of the adapter is called, and index items are created from
the adapter’s data. A GET_INDEXITEMS message is then sent by the server to request
a certain number of index items. When the client receives this message, it sends the
requested number of index items (or a RESULT message indicating that the indexing is
�nished) to the server. This “pull” design was chosen to prevent overload when many
clients are indexing at once.

When a REQUEST_DATA message is received by the client, the keys are extracted from
the message. The keys are passed to the GetIndexItems function, which retrieves the
associated data from its storage. That data is then sent to the server as a series of
INDEX_ITEMs.

Finally, when a START_UPDATE message is received by the client, the toolchaining script
is started, if one is con�gured. If the script runs successfully, the client then indicates



4.3. Communication protocol 39

arrival of new data using the INDEX_REQUEST data. The server receives this message
and starts an indexing process on the adapter when convenient.

An overview of the messages exchanged during the di�erent phases of the system can
be seen in �gure 4.6.

At any time during messaging exchanges like indexing or data retrieval, a failure mes-
sage can be sent, either by the client or the server. If the server receives a failure message
from the client, it aborts the current indexing or retrieval operation, and indicates an
error to the system user. If the server sends a failure message to the client, the client
aborts its current process (be it retrieval or indexing).
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Server Adapter Adapter implementation

REGISTER_SOURCE(type, desc, name)

RESULT(Success)

RegistrationRegistration

START_INDEX(index_after)

Generate index items
GET_INDEXITEMS(. . . )

Index itemINDEXITEM(object, time, key)

Index itemINDEXITEM(object, time, key)

. . .. . .
RESULT(Success)

IndexingIndexing

REQUEST_DATA(keys)

Retrieve Data
DataITEM_DATA(type, object, time, data)

DataITEM_DATA(type, object, time, data)

. . .. . .
RESULT(Success)

RetrievalRetrieval

START_UPDATE(params)
Run update script

Script �nished

INDEX_REQUEST

UpdateUpdate

Figure 4.6: Messages exchanged during registration, indexing and data retrieval.
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Chapter 5

Evaluation

5.1 Performance Evaluation

Performance is an important factor of the Empirator system. In this chapter, we will
show some metrics describing the performance characteristics of the Empirator system.

5.1.1 Index Database Performance

The index database is the central component governing the speed of the system. There-
fore, we executed some queries for evaluating the performance of the database.

At the time these analysis were executed, the database contained a total of 520 million
items, with information for 73.5 million distinct IP networks and 3.1 million distinct
DNS names recorded.

This information was generated from the data described in [22], which contains 7 full
IPv4 SSL scans and 8 Alexa Top 1 Million SSL scans. The BGP data in the system
was generated by reading MRT data dumps from the routeviews project collected by
the WIDE collector1. The database dumps and routing updates of one month were
analyzed. After importing initial BGP data, a continuous update was con�gured using
the toolchaining functionality described in chapter 4.2.2.1, and up-to-date BGP data was
being important constantly.

Figure 5.1 shows a graph indicating the indexed items during a long-running indexing
progress. Indexing data for both the BGP adapter and the SSL adapter is shown. Both
indexing processes were running concurrently.

The X axis indicates the total amount of items in the database, while the Y axis how
many items were added at that time point. Thus, the whole graph can be seen as an

1See http://archive.routeviews.org/route-views.wide/bgpdata/

http://archive.routeviews.org/route-views.wide/bgpdata/
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Figure 5.1: Indexing speed vs. items in database

indicator of indexing speed. Indexing speed decreases while the �rst 50 million items
are indexed, which stems from the insertion of new objects into the database (refer to
chapter 4.2.1.3 for the database scheme). The speed decrease at 125 million items for
the SSL adapter was likely caused by the database being used by other researchers. The
SSL adapter is in�uenced by database usage more strongly, since the SSL data is stored
in the same database as the index database.

In general, it can be seen that adding additional items to the index database does not
decrease indexing speed. No downward trend in the number of added items can be
discerned in the graph, and indexing speed remains at a minimum of 600 items/s at
most times.

In �gure 5.2a, the size of the index database is shown over time. The run times of the
indexing processes can be seen in the diagram: The database size grows more quickly
while both the BGP and SSL indexing processes are running. The database grows
less quickly after initial BGP indexing is �nished. After SSL indexing is �nished, the
ongoing BGP indexing increases the database size slowly. Total database size is about
80 GB after indexing has �nished. The combined size of the datasets (SSL database and
uncompressed BGP dumps) is about 220 gigabyte.

Finally, the memory usage of the Empirator index over the time of indexing is shown
in �gure 5.2b. The system quickly reaches a plateau of about 50 megabyte memory
usage. This decreases to about 38 to 40 megabyte after BGP indexing is �nished, and
decreases further to about 35 megabyte after SSL indexing is �nished. The pipelined
structure of the Empirator system allows this low memory usage: Items are dispatched
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Figure 5.2: Database and memory stats during indexing

from adapter to index to database in a continuous fashion, so only a small amount of
memory is needed.

5.1.2 Protocol Performance

Performance of the network protocol is not a prime concern for control messages (such
as START_UPDATE, REGISTER_SOURCE or PING), but during indexing, the performance of
the protocol becomes much more important. The indexing protocol causes the adapter
to send a large number (on the order of millions) of very small messages (about 30 byte
for an index message containing a single key, object and timestamp). However, ZeroMQ
batches messages, reducing the impact of such a large number of small packets. A
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Figure 5.3: Protocol speed

Type Total Average Median Standard deviation

IP address, single 637 s 6.37 s 5 s 3.88 s
IP networks, single 6403 s 64.03 s 64.5 s 46.5 s
DNS names, single 37 s 0.37 0.01 s 0.45 s

Table 5.1: Retrieval timings per request. Total number of items was 100

diagram of protocol throughput in a synthetic test case sending a large number of index
items can be seen in �gure 5.3. The average number of messages transferred per second
is about 25000 messages, with the drop at 400 seconds caused by non-benchmark use of
the system. Average throughput during the run was about 1.75 MByte/s.

5.1.2.1 Retrieval Performance

In order to evaluate retrieval performance of the Empirator system, several analyses
were executed. First, a random subset of 100 IPs was drawn from the Empirator database,
and data for those IPs was retrieved from the system using the Python module. The
whole test took about 10 minutes, which means an average time of 6 seconds for a single
request.

These tests were repeated with random IP networks and random DNS names. From the
gathered data, it is immediately apparent that retrieval time di�ers greatly, depending
on the adapter used. This is caused by the storage of IP data in a database, which allows
quick random access to the data, while BGP data has to be extracted from a number
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of compressed �les. The quick retrieval time of DNS data stems from the smaller data
volume contained in the system as well as DNS data being stored in a database as well.

5.2 Data Analysis

To evaluate the suitability of the Empirator system for combined data analysis, an
experiment combining SSL and BGP data was executed. The experiment measured
the correlation between SSL certi�cates and their expiry dates, and the availability of
routing data for those certi�cates.

The experiment was set up as follows: A list of 1000 randomly chosen IP addresses was
selected from the system (we chose a limit of 1000 addresses owing to time constraints).
Then, for each IP, the system was searched for BGP announcements for pre�xes contain-
ing this IP using a COUNT query. If no announcement was found for these IP addresses,
the address was not reachable. For all IPs in the system that were not reachable, cer-
ti�cate data was selected from the system. Finally, the certi�cate data, expiry date and
issuer were analyzed.

count_bgp_entries = query.Count(object.OBJECT_IP,

query.And(

query.And(

query.And(

query.TimeAfter(datetime(2015,5,11,17,59)),

query.TimeBefore(datetime(2015,5,11,18,1))),

query.SourceExact("BGP_Data")),

query.IPIsContained(ip)))

retrieve_ssl_data = query.Query(objects.OBJECT_IP,

query.And(

query.SourceExact("SSL_Data"),

query.IPExact(ip)))

Listing 5: Example queries used during the experiment

The queries used during the experiment can be seen in listing 5. The �rst query checks
whether the IP speci�ed as argument is reachable. This is done by selecting a timestamp
where a BGP database dump dump took place (found via the web interface by searching
BGP data), and limiting the data to data retrieved from the BGP adapter. If the number
of items in the database is zero, no routing entry for that IP was contained in the BGP
database dump, which means the IP address was not reachable at that time. After that,
the certi�cate data for each unreachable IP was retrieved with the second query. By
restricting the time, we retrieve only entries from the latest SSL scan. Finally, we check
the expiry date of the retrieved certi�cate data, and output any certi�cates that are still



46 Chapter 5. Evaluation

valid.

The results we found were not surprising: Most certi�cates had expiry times well before
the time of our BGP dump, thus not allowing any conclusions about the reachability.
This could be recti�ed by importing historical BGP data into the system, and querying
for BGP data around the time of expiry of these certi�cates.

A single certi�cate was found having an expiry date in 2040, while not being reachable
any more. The subject of the certi�cate is “CN=r4-u14.micfo.com”, with micfo.com being
a service provider. Possibly this certi�cate stemmed from a miscon�gured external
server that was not meant to be exposed to the public internet.

It will be interesting to extend the results of this study with a more thorough experiment
using the Empirator system.
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Conclusion

6.1 Future Work

While the Empirator system as described in this work ful�lls the requirements outlined
very well, several avenues are available for extending use of the Empirator system.

First, and chie�y, the implementation of additional adapters. The combined amount of
data available in the Empirator system is its primary asset. Increasing the number of
adapters thus greatly increases the utility of the Empirator system. Using the support
infrastructure outlined in chapter 4.2.2, implementing an adapter is relatively simple,
and should be possible for a wide array of data storage methods.

In regard to features, the Empirator system provides all features necessary for the
described use cases. However, several improvements would allow wider deployment of
the Empirator system.

Cryptography support for both adapters and users of the system would allow deploy-
ment of the system over untrusted network. The ZeroMQ library supports asymmetric
cryptography for both authentication and encryption, which would allow adapters and
servers to authenticate each other. Securing the web interface would be accomplished
by deploying an SSL-enabled proxy to secure the JSON web frontend, and con�guring
the server serving the web interface to employ HTTPS as well.

By implementing a role- or user-based authentication system and rights management
system, sensitive data could be stored in the Empirator database, without the risk of
having unauthorized users access that data. This would require extension of the index
database with user and role information.

In general, the small code base and �exible implementation of the Empirator system
allows easy improvements for a range of features of the system, such as extending
the available query formats, optimizing adapter performance, providing more func-
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tionality in the Python access module or extending the web interface (graphically and
functionally).

Of course, using the functionality of the Empirator system for combined analysis of
data opens wide possibilities for further research. The analyses implemented in chapter
5.2 only exercised a small part of the experiments possible with the Empirator system.

6.2 Summary

The goal of this work was the design of a system that allowed centralized organization
and retrieval of network measurement data. Additional goals for the system were sim-
plicity and ease of extension, convenience for the researcher and adequate performance
for interactive use.

To reach these goals, we made a number of important decisions about the design of the
system. Several key properties were identi�ed during the design process: Decentralized
data storage allows data to remain in the original system, and access via a custom
access component allows access to wide variety of data sources. A �exible data format
enables storage and retrieval of arbitrary data limiting scope of the system. Limited
data selection options allow the system to perform well during data retrieval, and still
allow most interesting operations. Filtering allows arbitrary processing and extension
of the data during retrieval, and toolchaining enables simple adaption of experiments
for continuous data collection.

The system was then implemented, keeping the aforementioned design decisions in
mind. The implementation consisted of a central component, containing functionality
to index data, retrieve data via an extensive set of queries, automate collection of data
and augment retrieved data via con�gurable scripts. Additionally, adapters for two
networking experiments were implemented: An adapter for accessing SSL scan data
contained in a database, and a second adapter for accessing data contained in BGP
dump data. For communication between the adapters and the central component, a
simple network protocol was designed and implemented. Finally, for accessing the
functionality of the system, a web user interface and a python module for programmatic
access were implemented.

That system was then evaluated, proving satisfactory performance for both retrieval
and indexing. Finally, a simple example experiment correlating host reachability with
certi�cate expiry dates was was implemented, �nding several certi�cates on hosts no
longer reachable, but valid nonetheless.

In conclusion, the �nal implementation of the system ful�lls the goals we set out to
achieve in the beginning of this work. The Empirator system allows running experi-
ments using existing data with little e�ort, while being easy to extend and understand.
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The author believes that the Empirator system will be a valuable tool in a network
researcher’s toolbox.
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